Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Numerical Bifurcation Analysis of Discontinuous 2-DOF Vibroimpact System. Part 2 Frequency-Amplitude Response

Journal of Applied Nonlinear Dynamics 5(3) (2016) 269--281 | DOI:10.5890/JAND.2016.09.002

V.A. Bazhenov; P.P. Lizunov; O.S. Pogorelova; T.G. Postnikova

Kyiv National University of Construction and Architecture, 31, Povitroflotskiy avenu, Kyiv, Ukraine

Download Full Text PDF



This paper discusses bifurcations in nonlinear vibroimpact system. It is a discontinuous dynamical system. We were studying stability and bifurcations in specific two-body two-degree-of-freedom vibroimpact system by numerical parameter continuation method. We adapted parameter continuation technique for this system. Theoretical basis for dynamic characteristics composition was presented in [1]. The instability zones and bifurcation points for loading curves were determined in [1] under excitation amplitude variation. In this paper we investigate the instability zones and bifurcation points under variation of excitation frequency when we consider the frequency-amplitude response. We have observed phenomena unique for nonsmooth systems with discontinuous right-hand side: discontinuous bifurcation points where set-valued Floquet multipliers cross the unit circle by jump. At these points monodromy matrix is changed by jump too. We also have observed chattering regimes leading to chaos.


  1. [1]  Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G., and Otrashevskaia, V.V. (2015), Stability and Bifurcations Analysis for 2-DOF Vibroimpact System by Parameter Continuation Method. Part I: Loading Curve. Journal of Applied Nonlinear Dynamics, (in press).
  2. [2]  Babitsky, V.I. (1998), Theory of vibro-impact systems and applications. Springer.
  3. [3]  Ibrahim, R.A. (2009), Vibro-impact dynamics: modeling, mapping and applications (Vol. 43). Springer.
  4. [4]  Stronge, W.J. (2004), Impact mechanics. Cambridge university press.
  5. [5]  Ivanov, A.P. (1997), Dynamics of systems with mechanical impacts. International Education Program, Moscow, 336.
  6. [6]  Luo, A.C., & Guo, Y. (2012), Vibro–impact Dynamics. John Wiley & Sons.
  7. [7]  Ajibose, O., Wiercigroch, M., Pavlovskaia, E., & Akisanya, A. (2008, June), Influence of contact force models on the global and local dynamics of drifting impact oscillator. In Proceedings of the 8th World Congress on Computational Mechanics (WCCM‘08) and 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS‘08).
  8. [8]  Foale, S., & Bishop, S.R. (1994), Bifurcations in impact oscillations. Nonlinear Dynamics, 6(3), 285-299.
  9. [9]  Toulemonde, C., & Gontier, C. (1998), Sticking motions of impact oscillators. European Journal of Mechanics- A/Solids, 17(2), 339-366.
  10. [10]  Blazejczyk-Okolewska, B., Czolczynski, K., & Kapitaniak, T. (2009), Dynamics of a two-degree-of-freedom cantilever beam with impacts. Chaos, Solitons & Fractals, 40(4), 1991-2006.
  11. [11]  Peterka, F. (1971), An investigation of the motion of impact dampers, paper I, II, III. Strojnicku Casopis XXI, c, 5.
  12. [12]  di Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P., & Guckenheimer, J. (2008), Piecewisesmooth dynamical systems. SIAM review, 50(3), 606.
  13. [13]  Leine, R. I., & Van Campen, D. H. (2002), Discontinuous bifurcations of periodic solutions. Mathematical and computer modelling, 36(3), 259-273.
  14. [14]  Seydel, R. (2010), Practical bifurcation and stability analysis. New York: Springer.
  15. [15]  Ivanov, A.P. (2012), Analysis of discontinuous bifurcations in nonsmooth dynamical systems. Regular and Chaotic Dynamics, 17(3-4), 293-306.
  16. [16]  Leine, R.I., Van Campen, D.H., & Van de Vrande, B.L. (2000), Bifurcations in nonlinear discontinuous systems. Nonlinear dynamics, 23(2), 105-164.
  17. [17]  Kowalczyk, P., di Bernardo, M., Champneys, A.R., Hogan, S.J., Homer, M., Piiroinen, P.T., Kuznetsov, Yu A., & Nordmark, A. (2006), Two-parameter discontinuity-induced bifurcations of limit cycles: classification and open problems. International Journal of bifurcation and chaos, 16(03), 601-629.
  18. [18]  di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Tost, G.O., & Piiroinen, P.T. (2008), Bifurcations in nonsmooth dynamical systems.SIAM review, 629-701.
  19. [19]  Brogliato, B. (1999), Nonsmooth mechanics: Models, dynamics and control. Springer Science & Business Media.
  20. [20]  Brogliato, B. (Ed.), (2000), Impacts in mechanical systems: analysis and modelling (Vol. 551). Springer Science & Business Media.
  21. [21]  Alzate, R. (2008), Analysis and Application of Bifurcations in Systems with Impacts and Chattering (Doctoral dissertation, University degli Studi di Napoli Federico II).
  22. [22]  di Bernardo, M., Budd, C.J., Champneys, A. R., and Kowalczyk, (2007), Bifurcation and Chaos in Piecewise Smooth Dynamical Systems. Theory and Applications. Springer-Verlag,UK.
  23. [23]  Allgower, E.L., & Georg, K. (2003), Introduction to numerical continuation methods (Vol. 45). SIAM.
  24. [24]  Nayfeh, A.H., & Balachandran, B. (1995), Applied nonlinear dynamics: analytical, computational, and experimental methods.
  25. [25]  Bazhenov, V.A., Pogorelova, O.S., & Postnikova, T.G. (2013), Comparison of Two Impact Simulation Methods Used for Nonlinear Vibroimpact Systems with Rigid and Soft Impacts. Journal of Nonlinear Dynamics, 2013.
  26. [26]  Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G., & Goncharenko, S.N. (2009), Comparative analysis of modeling methods for studying contact interaction in vibroimpact systems. Strength of materials, 41(4), 392-398.
  27. [27]  Goldsmith, W. (1964), Impact, the theory and physical behaviour of colliding solids.
  28. [28]  Johnson, K.L. (1974), Contact mechanics, 1985. Cambridge University Press, Cambridge.
  29. [29]  Machado,M., Moreira, P., Flores, P., & Lankarani, H.M. (2012), Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mechanism and Machine Theory, 53, 99-121.
  30. [30]  Perret-Liaudet, J., & Rigaud, E. (2009), Non Linear Dynamic Behaviour of an One-Sided Hertzian Contact Excited by an External Gaussian White Noise Normal Excitation. In Vibro-Impact Dynamics of Ocean Systems and Related Problems (pp. 215-215). Springer Berlin Heidelberg.
  31. [31]  Lamarque, C.H., & Janin, O. (2000), Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition. Journal of Sound and Vibration, 235(4), 567-609.
  32. [32]  Zakrzhevsky, M., Schukin, I., & Yevstignejev, V. (2007). Rare attractors in driven nonlinear systems with several degrees of freedom. Transport & Engineering, 24.