Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Numerical Modeling of Photon Migration in Human Neck Based on the Radiative Transport Equation

Journal of Applied Nonlinear Dynamics 5(1) (2016) 117--125 | DOI:10.5890/JAND.2016.03.009

Hiroyuki Fujii $^{1}$, Shinpei Okawa $^{2}$, Ken Nadamoto$^{3}$, Eiji Okada$^{3}$, Yukio Yamada$^{4}$, Yoko Hoshi$^{5}$, Masao Watanabe$^{1}$

$^{1}$ Division of Space and Mechanical Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Japan

$^{2}$ National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan

$^{3}$ Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan

$^{4}$ Brain Science Inspired Life Support Research Center, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Japan

5Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, Japan

Download Full Text PDF



Biomedical optical imaging has a possibility of a comprehensive diagnosis of thyroid cancer in conjunction with ultrasound imaging. For improvement of the optical imaging, this study develops a higher order scheme for solving the time-dependent radiative transport equation (RTE) by use of the finite-difference and discrete-ordinate methods. The accuracy and efficiency of the developed scheme are examined by comparison with the analytical solutions of the RTE in homogeneous media. Then, the developed scheme is applied to describing photon migration in the human neck model. The numerical simulations show complex behaviors of photon migration in the human neck model due to multiple diffusive reflection near the trachea.


This work is supported in part by Grants-in-Aid for Regional R&D Proposal-Based Program from Northern Advancement Center for Science & Technology of Hokkaido Japan, and the Japan Science and Technology Agency. We would like to express appreciation to Dr. Kazumichi Kobayashi for fruitful discussions.


  1. [1]  Wartofsky, L., (2010), Increasing world incidence of thyroid cancer : Increased detection or higher radiation exposure ?. HORMONES, 9, 103-108.
  2. [2]  Levi, J., Kothapalli, S.-R., Bohndiek, S., Yoon, J.-K., Dragulescu-Andrasi, A., Nielsen, C., Aleksandra, T., Bodapati, S., Gowrishankar, G., Yan, X., Chan, C., Starcevic, D., and Gambhir, Sam, S., (2013), Molecular Photoacoustic Imaging of Follicular Thyroid Carcinoma. Clin. Cancer Res., 19, 1494-1502.
  3. [3]  Yamada, Y., and Okawa, S., (2014), Diffuse Optical Tomography : Present Status and Its Future. Opt. Rev., 21, 185-205.
  4. [4]  Gibson, A. P., Hebden, J. C., and Arridge, S. R., (2005), Recent advances in diffuse optical imaging. Phys. Med. Biol., 50, R1-R43.
  5. [5]  Arridge, S. R., (1999), Optical tomography in medical imaging. Inverse Prob., 15, R41-R93.
  6. [6]  Klose, A. D., Netz, U., Beuthan, J., and Hielscher, A. H., (2002), Optical tomography using the timeindependent equation of radiative transfer - Part 1 : forward model. J. Quant. Spectrosc. Radiat. Transfer, 72, 691-713.
  7. [7]  Klose, A. D., Ntziachristos, V., and Hielscher, A. H., (2005), The inverse source problem based on the radiative transfer equation in optical molecular imaging. J. Comput. Phys., 202, 323-345.
  8. [8]  Abdoulaev, G. S., and Hielscher, A. H., (2003), Three-dimensional optical tomography with the equation of radiative transfer. J. Electron. Imaging., 12, 594-601.
  9. [9]  Marin, M., Asllanaj, F., and Maillet, D., (2014), Sensitivity analysis to optical properties of biological tissues subjected to a short-pulsed laser using the time-dependent radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 133, 117-127.
  10. [10]  Schweiger, M., Arridge, S. R., and Delpy, D. T., (1993), Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography, J. Math. Imag. Vision, 3, 263-283.
  11. [11]  Gao, F., Zhao, H., and Yamada, Y., (2002), Improvement of Image Quality in Diffuse Optical Tomography by use of Full Time-Resolved Data. Appl. Opt., 41, 778-791.
  12. [12]  Okawa, S., Hoshi, Y., and Yamada, Y., (2011), Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization. Biomed. Opt. Express, 2, 3334-3348.
  13. [13]  Yoo, K.M., Liu, F., and Alfano, R. R., (1990), When does the diffusion approximation fail to describe photon transport in random media?. Phys. Rev. Lett., 64, 2647-2650.
  14. [14]  Hielscher, A. H., Alcouffe, R. E., and Barbour, R. L., (1998), Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Phys. Med. Biol., 43, 1285-1302.
  15. [15]  Yuan, Z., Hu, X.-H., and Jiang, H., (2009), A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography. Phys. Med. Biol., 54, 65-88.
  16. [16]  Chandrasekhar, S., (1960), Radiative Transfer. Dover, New York.
  17. [17]  Henyey, L. G., and Greenstein, L. J., (1941), Diffuse radiation in the galaxy. J. Astrophys., 93, 70-83.
  18. [18]  Heino, J., Arridge, S., Sikora, J., and Somersalo, E., (2003), Anisotropic effects in highly scattering media. Phys. Rev. E, 68, 031908 1-8.
  19. [19]  Fujii, H., Okawa, S., Yamada, Y., and Hoshi, Y., (2014), Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations. J. Quant. Spectrosc. Radiat. Transfer, 147, 145-154.
  20. [20]  Klose, A. D., and Hielscher, A. H., (1999), Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer. Med. Phys., 26, 1698-1707.
  21. [21]  Liu, L., Ruan, L., and Tan, H., (2002), On the discrete ordinates method for radiative heat transfer in anisotropically scattering media. Int. J. Heat Mass Transfer, 45, 3259-3262.
  22. [22]  Guo, Z., and Kumar, S., (2001), Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media. Appl. Opt., 40, 3156-3163.
  23. [23]  Bashkatov, A. N., Genina, E. A., and Tuchin, V. V., (2011), OPTICAL PROPERTIES OF SKIN , SUBCUTANEOUS , AND MUSCLE TISSUES : A REVIEW. J. Innovative Opt. Heanlth Sci., 4, 9-38.
  24. [24]  Dehaes, M., Gagnon, L., Vignaud, A., Valabr, R., Grebe, R., Wallois, F., and Benali, H., (2011), Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging : a simulation study. Biomed. Opt. Express, 2, 680-695.
  25. [25]  Paasschens, J. C. J., (1997), Solution of the time-dependent Boltzmann equation. Phys. Rev. E, 56, 1135- 1141.
  26. [26]  Chandrasekhar, S., (1943), Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys., 15, 1-88.
  27. [27]  Furutsu, K., and Yamada, Y., (1994), Diffusion approximation for a dissipative random medium and the applications. Phys. Rev. E, 50, 3634-3640.
  28. [28]  Pierrat, R., Greffet, J.-j., and Carminati, R., (2006), Photon diffusion coefficient in scattering and absorbing media. J. Opt. Soc. Am. A, 23, 1106-1110.
  29. [29]  Martelli, F., Sassaroli, A., Pifferi, A., Torricelli, A., Spinelli, L., and Zaccanti, G., (2007), Heuristic Green*s function of the time dependent radiative transfer equation for a semi-infinite medium. Opt. Express, 15, 18168-18175.