Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Initial-Boundary Value Problems for Local Fractional Laplace Equation Arising in Fractal Electrostatics

Journal of Applied Nonlinear Dynamics 4(4) (2015) 349--356 | DOI:10.5890/JAND.2015.11.002

Xiao-Jun Yang$^{1}$, H. M. Srivastava$^{2}$, Dumitru Baleanu$^{3}$,$^{4}$

$^{1}$ Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, People’s Republic of China

$^{2}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada

$^{3}$ Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, TR-06530 Ankara, Turkey

$^{4}$ Institute of Space Sciences, P.O. BOX, MG-23, RO-76900 Magurele-Bucharest, Romania

Download Full Text PDF



The initial-boundary value problems for the local fractional Laplace equation, which arises in fractal electrostatics, are investigated in this article. The non-differentiable solutions with different initial and boundary conditions are obtained by using the local fractional series expansion method.


  1. [1]  Vicsek, T. (1989), Fractal Growth Phenomena, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong.
  2. [2]  Barabási, A. L. (1995), Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, London and New York.
  3. [3]  Falconer, K. (2013), Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, New York, Chichester, Brisbane and Toronto.
  4. [4]  Gouyet, J. F., Mandelbrot, B. (1996), Physics and Fractal Structures, Masson, Paris.
  5. [5]  Le Poidevin, R. (1992), On the acausality of time, space, and space-time, Analysis, 52, 146-154.
  6. [6]  Zmeskal, O., Vala, M., Weiter, M., Stefkova, P. (2009), Fractal-Cantorian geometry of space-time, Chaos, Solitons & Fractals, 42, 1878-1892.
  7. [7]  Yang, X.-J. (2012), Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York.
  8. [8]  Yang, X.-J., Baleanu, D., Machado, J. A. T. (2013), Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis, Boundary Value Problems, 2013, 1-16.
  9. [9]  Kolwankar, K. M., Gangal, A. D. (1998), Local fractional Fokker-Planck equation, Physical Review Letters, 80, 214-217.
  10. [10]  Kolwankar, K. M., Gangal, A. D. (1996), Fractional differentiability of nowhere differentiable functions and dimensions, Chaos: An Interdisciplinary Journal of Nonlinear Science, 6, 505-513.
  11. [11]  Carpinteri, A., Cornetti, P. (2002), A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos, Solitons & Fractals, 13, 85-94.
  12. [12]  Carpinteri, A., Cornetti, P., Sapora, A. (2009), Static-kinematic fractional operators for fractal and non-local solids, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 89, 207-217.
  13. [13]  Anastassiou, A., Duman, O. (2013), Advances in Applied Mathematics and Approximation Theory, Springer, New York.
  14. [14]  Machado,J. A. T., Baleanu, D., Luo, Albert, C. J. (2014), Discontinuity and Complexity in Nonlinear Physical Systems, Springer, Berlin, Heidelberg and New York.
  15. [15]  Roy, A. Z. D., Xavier, M. (2014), Fractional Calculus: Theory, Nova Science, New York.
  16. [16]  De Oliveira, E. C., Machado, J. A. T. (2014), Review of definitions for fractional derivatives and integrals, Mathematical Problems in Engineering, 2014, Article ID 238459, 1-6.
  17. [17]  Yang, X.-J., Srivastava, H. M., He, J.-H., Baleanu, D. (2013), Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Physics Letters A, 377, 1696-1700.
  18. [18]  Yang, X.-J., Baleanu, D., Khan, Y., et al. (2014), Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Romanian Journal of Physics, 59, 36-48.
  19. [19]  Li, Y.-Y., Zhao, Y., Xie, G.-N., Baleanu, D., Yang, X.-J. (2014), Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain, Advances in Mathematical Physics, 2014, Article ID 590574, 1-5.
  20. [20]  Yan, S.-P., Jafari, H., Jassim, H. K. (2014), Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators, Advances in Mathematical Physics, 2014, Article ID 161580, 1-7.
  21. [21]  Yang, A.-M., Yang, X.-J., Li, Z.-B. (2013), Local fractional series expansion method for solving wave and diffusion equations on Cantor sets, Abstract and Applied Analysis, 2013, Article ID 351057, 1-5.
  22. [22]  Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York.
  23. [23]  Srivastava, H. M., Golmankhaneh, A. K., Baleanu, D., Yang, X.-J. (2014), Local fractional Sumudu transform with application to IVPs on Cantor sets, Abstract and Applied Analysis, 2014, Article ID 620529, 1-7.
  24. [24]  Yang, A.-M., Lie, J., Srivastava, H. M., Xie, G.-N., Yang, X.-J. (2014), Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative, Discrete Dynamics in Nature and Society, 2014, Article ID 365981, 1-8.
  25. [25]  Yang, X.-J., Hristov, J., Srivastava, H. M., Ahmad, B. (2014), Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation, Abstract and Applied Analysis, 2014, Article ID 278672, 1-10.
  26. [26]  Gorenflo, R., Mainardi, F., Srivastava, H. M. (1998), Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, Bulgaria; August 18-23, 1997) (D. Bainov, Editor), pp. 195-202, VSP Publishers, Utrecht and Tokyo.
  27. [27]  Baleanu, D., Srivastava, H. M., Yang, X.-J. (2015), Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets, Progress in Fractional Differentiation and Applications, 1, 1-11.