Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Study of the Effect of the Coupling in a Dispersion-managed Dual Core Optical Fiber Using the Collective Variables Approach

Journal of Applied Nonlinear Dynamics 4(2) (2015) 101--116 | DOI:10.5890/JAND.2015.06.001

Roger Bertin Djob$^{1}$; Aurélien Kenfack-Jiotsa$^{2}$; Timoléon Crépin Kofané$^{3}$

$^{1}$ Laboratory of Mechanics, Department of Physics, Faculty of Sciences, University of Yaounde I, P.O. Box 812, Yaound´e, Cameroon

$^{2}$ Nonlinear Physics and Complex Systems Group, Department of Physics, The Higher Teachers’ Training College, University of Yaounde I, P.O. Box 47 Yaoundé, Cameroon

$^{3}$ Laboratory of Mechanics, Department of Physics, Faculty of Sciences, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon

Download Full Text PDF



This paper highlights the interaction between two gaussian pulses propagating inside a dual core optical fiber by the mean of collective variables (CVs) approach. The main result is that energies of the signals being propagated in such fiber with linear coupling always end up being compensated whatever their amplitudes at the entry. It also appears convergence or divergence of the temporal positions of the neighboring solitary waves.


  1. [1]  Agrawal, G.P. (1995), Nonlinear Fiber Optics, 2nd ed. Academic Press, New York.
  2. [2]  Hasegawa, A. and Kodama, Y. (1995), Solitons in Optical Communication, Oxford University Press, New York.
  3. [3]  Zakharov, V. E. and Wabnitz, S. (1998), Optical Solitons: Theoretical Challenges and Industrial Perspectives, Springer-Verlag, Berlin.
  4. [4]  van Saarloos, (2003), Front Propagation Into Unstable States, Physics Reports, 386, 29-222.
  5. [5]  Cross, M. and Hohenberg, P.C. (1993), Pattern Formation Outside of equilibrium, Review of Modern Physics, 65, 851-1112.
  6. [6]  Agrawal, G.P. (1989), Nonlinear Fiber Optics, Academic Press, San Diego.
  7. [7]  Hasegawa, A. and Kodama, Y. (1995), Solitons in Optical Communication, Oxford University Press, New York.
  8. [8]  Nakkeeran, K. (2000), Optical Solitons In Erbium-doped Fibre With Higher-order Effects And Pum, Journal of Physics A: Mathematical and General, 33, 4377-4381.
  9. [9]  Nakkeeran, K. (2000), Optical Solitons in Erbium-doped Fibers With Higher Order Effects, Physics Letter A, 275, 415-418.
  10. [10]  Agrawal, G.P. (1989), Nonlinear Fiber Optics, Academic Press, San Diego.
  11. [11]  Biswas, A. and Konar, S. (2006), Introduction To Non-Kerr Law Optical Solitons, CRC Press.
  12. [12]  Carter, G.M. and Jacob, J.M. (1998), IEEE Photon, Technol. Lett., 10, 546-548.
  13. [13]  Merlaud, F. and Georges, T. (1998), Soliton collision in Dispersion-managed Links, ECOC, 98 1560-1562.
  14. [14]  Tchoffo Dinda, P., Moubissi, A.B., and Nakkeeran, K. (2001), Non-Lagrangian Collective Variable Approach For Optical Solitons In Fibres, Journal of Physics A, 34, 129-136.
  15. [15]  Kodama, Y., Romagnoli, M., and Wabnitz, S. (1992), Soliton Stability and Interactions in Fibre Lasers, Electronics Letters, 28, 1981-1983.
  16. [16]  Nijhof, J.H.B., Doran, N.J., Forysiak, W., and Knox, F.M. (1997), Stable Soliton-Like Propagation In Dispersion-Managed Systems With Net Anomalous Zero And Normal Dispersion, Electron. Lett., 33, 1726- 1727.
  17. [17]  Lakoba, T.I., Kaup, D.J. (1998), Shape Of Stationary Solitons In Strong Dispersion Management Regime, Electronics Letters., 34, 1124-1125.
  18. [18]  Turitsyn, S.K., Schafer, T., and Mezentsev, V.K. (1998), Self-Similar Core And Oscillatory Tails Of A Path- Averaged Chirp Dispersion-Managed Optical Pulse, Optics Letter, 23, 1351-1353.
  19. [19]  Turitsyn, S.K. and Sha, E.G. (1998), Dispersion-Managed Soliton In Optical Amplifier Transmission Systems With Zero Average Dispersion, Optics Letters, 23, 682-684.
  20. [20]  Biswas, A. (2002), Theory of optical Bullets, Journal of Optics A, 4, 84-97.
  21. [21]  Biswas, A. Milovic, D., and Edwards, M.E. (2010), Mathematical Theory Of Dispersion-Managed Optical Solitons, Springer Verlag, New York.
  22. [22]  Kohl, R., Milovic, D., Zerrad, E. and Biswas, A. (2009), Soliton Perturbation Theory For Dispersion-Managed Optical Fibers, Journal of Nonlinear Optical Physics and Materials, 18, 227-270.
  23. [23]  Fewo, S.I., Atangana, J., Kenfack-Jiotsa, A. and Kofane, T.C. (2005), Dispersion-Managed Solitons In The Cubic Complex Ginzburg-Landau Equation As Perturbations Of NonLinear Schinger Equation, Optics Communications, 252, 138-149.
  24. [24]  Fewo, S.I., Kenfack-Jiotsa, A., and Kofane, T.C. (2006), Dynamics Of Solitons In Filtered Dispersion- Managed Systems, Journal of Physics A: General Physics, 39, 1449-1461.
  25. [25]  Fewo, S.I. and Kofane, T.C. (2008), A Collective Variable Approach For Optical Solitons In the Cubic-Quintic Complex Ginzburg-Landau Equation With Third-order Dispersion, Optics Communication, 281, 2893-2906.
  26. [26]  Green, P., Milovic, D., Lott D.A., and Biswas, A. (2008), Dynamics Of Gaussian Optical Solitons By Collective Variables Method, Applied Mathematics and Information Sciences, 2, 259-273.
  27. [27]  Shwetanshumala and Biswas, A. (2008), Femtosecond Pulse Propagation In Optical Fibers Under Higher Order Effects: A Collective Variable Approach, International Journal of Theoretical Physics, 47, 1699-1708.
  28. [28]  Pelap, F.B. and Faye, M.M. (2004), Modulatinal Instability And Exact Solutions Of The Modified Quintic Complex Ginzburg-Landau Equation, Journal of Physics A: Mathematical and General 37, 1727-1736.
  29. [29]  Malomed, B. and Winful, H. (1996), Stable Solitons In two-component Active Systems, Physics Review E, 21, 471-473.
  30. [30]  Winful, H. and Walton, D. (1992), Passive Mode Locking Through Nonlinear Coupling In A Dual-core Fiber Laser, Optics Letter, 17, 1688-1690.
  31. [31]  Sakaguchi, H. (1995), Phase Dynamics Of the Coupled Complex Ginzburg-Landau Equation, Progress Of Theoretical Physics,93, 491-502.
  32. [32]  Sigler, A. and Malomed, B.A. (2005), Solitary Pulses In Linearly Coupled Cubic-Quintic Ginzburg-Landau Equations, Physica D, 212, 305-316.
  33. [33]  Biswas., A. (2007), Mathematical Theory of Dispersion-Managed Optical Solitons, Optik, 118, 120-133.