Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Fractional Modeling of Driver’s Dynamics. Part2: Set Membership Approach for Steering Feel and Visual Feedback

Journal of Applied Nonlinear Dynamics 3(3) (2014) 215--226 | DOI:10.5890/JAND.2014.09.002

Firas Khemane, Rachid Malti†, and Xavier Moreau

Universit´e de Bordeaux, Laboratoire de l’Int´egration du Mat´eriau au Syst`eme – UMR-CNRS 5218

351 cours de la lib´eration – 33405 Talence, France

Download Full Text PDF



This paper is the second part of a study related to modeling drivers dynamics in the overall driving loop in the context of disturbance rejection and trajectory tracking. After a brief description of the experimental set-up, a fractional model for steering feel and visual feedback cases are proposed, and their parameters estimated. As expected in human reaction, data recorded from different experiments present a considerable dispersion, due to varying human reactions from one experiment to another. Such time-variant systems can be modeled using set membership methods which allow identifying a set of feasible models for healthy persons.


  1. [1]  Wakita, T., Ozawa, K., Miyajima, C., Igarashi, K., Itou, K., Takeda, K., and Itakaru, F. (2005), Driver
  2. [2]  Amberkar, S., Bolourchi, F., Demerly, J., and Millsap, S. (2004), A control system methodology for steer
  3. [3]  Van Der Helm, F.C.T., Schouten, A.C., Vlugt, E.d., and Brouwn, G.G. (2002), Identification of intrinsic
  4. [4]  Speich, J.E., Shao, L., and Goldfarb, M. (2005), Modeling the human hand as it interacts whith a telemanipulation
  5. [5]  Copot, C., Ionescu, C.M. , and DeKeyser, R. (2013), Fractional order level control of a system with communicating
  6. [6]  Abi, R., Daou, Z., Moreau, X., and Francis, C. (2013), Control of a hydro-electromechanical system using
  7. [7]  Erjaee, G.H., Ostadzad, M.H., Okuguchi, K., and Rahimi, E. (2013), Fractional differential equations system
  8. [8]  Bazargan, A.H., Mehrandezh, M., and Dai, L. (2013), On dynamics and control of an adaptable wheeled
  9. [9]  Mathieu, B., Oustaloup, A., and Levron, F. (1995), Transfer function parameter estimation by interpolation
  10. [10]  Le Lay, L. (1998), Identification fr´equentielle et temporelle par mod`ele non entier, PhD thesis, Universit´e
  11. [11]  Val´erio, D., and da Costa, J.S.(2007), Advances in Fractional Calculus Theoretical Developments and Applications
  12. [12]  Khemane, F., Malti, R., Thomassin, M., and Ra¨ıssi, T. (2008), Set membership estimation of fractional
  13. [13]  Malti, R., Ra¨ıssi, T., Thomassin, M., and Khemane, F. (2009), set membership parameter estimation
  14. [14]  Khemane, F., Malti, R., Ra¨ıssi, T., and Moreau, X. (2012), Robust estimation of fractional models in the
  15. [15]  Khemane, F., Malti, R., Moreau, X., Ra¨ıssi, T., and Thomassin, M. (2010), Comparison between two set
  16. [16]  Moreau, X., Khemane, F., Malti, R., and Mermoz, J.L. (2011), Fractional modeling of driver’s dynamics.
  17. [17]  Matignon, D. (1998), Stability properties for generalized fractional differential systems. ESAIM proceedings - Syst`emes Diff´erentiels Fractionnaires - Mod`eles, M´ethodes et Applications, 5.
  18. [18]  Moore, R.E. (1966), Interval analysis, Prentice-Hall, Englewood Cliffs, NJ.
  19. [19]  Bendat, J.S., and Piersol, A.G. (2000), Random Data Analysis and Measurement Procedures, Wiley Series
  20. [20]  Antoni, J. and Schoukens, J. (2007), A comprehensive study of the bias and variance of frequency-responsefunction
  21. [21]  Jaulin, L. and Walter, E. (1993), Set inversion via interval analysis for nonlinear bounded-error estimation,
  22. [22]  Chabert, G. and Jaulin, L. (2009), Contractor programming, Artificial Intelligence.
  23. [23]  Jaulin, L. and Chabert, G. (2008), Quimper : un langage de programmation pour le calcul ensembliste;
  24. [24]  Reynet, O., Jaulin, L., and Chabert, G. (2009), Robust tdoa passive location using interval analysis and