Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

On the Production Of Energy From Sea Waves By a Rotating Pendulum A Preliminary Experimental Study

Journal of Applied Nonlinear Dynamics 3(2) (2014) 187--201 | DOI:10.5890/JAND.2014.06.008

S. Lenci

Università Politecnica delle Marche, Dipartimento di Ingegneria Civile, Edile e Architettura (DICEA), Via Brecce Bianche, 60131 Ancona, Italy

Download Full Text PDF



The paper is aimed at experimentally showing the possibility of energy production by water waves using a new mean of production of green energy which has been proposed recently. Rotations of a floating pendulum, constrained to move vertically, are studied experimentally in the wave flume of the Laboratory of Hydraulics of the Polytechnic University of Marche. After checking the robustness of the rotation for different values of the wave frequency and amplitude, a generator applied to the pendulum pivot is switched on, and it is shown that it is able to produce electric energy. This represents the experimental proof of the feasibility of the underlying idea. The extracted energy is still small, and further developments are required to optimize the system, likely involving control for rotation activation and sustain in irregular waves, but the goal of showing that it is possible to produce energy from sea waves by a pendulum is reached, and the way for new development is opened.


The author wishes to thank the E. Venturi and W. Luzi for building the experimental pendulum and for the experimental tests; A. Mancinelli for the permission to use the Laboratory of Hydraulics, Polytechnic University of Marche, Ancona, Italy; M. Brocchini and C. Lorenzoni for their contributions to the hydraulic part of the experiment; M. Postacchini for the help with the wave flume; Prof. P. Castellini, of the Department of Mechanics, for the help with the measurements set-up and tools.


  1. [1]  REN21 Renewables 2010 Global Status Report (2010), p. 15. Available at SR 2010 full.pdf.
  2. [2]  Adams, W.M., and Jeanrenaud, S.J. (2008), Transition to Sustainability: Towards a Humane and Diverse World, IUCN: Gland Switzerland. ISBN 9782831710723.
  3. [3]  Charlier, R. (1982), Tidal Energy, Van-Nostrand Reinhold, New York.
  4. [4]  Cruz, J. (2008), Ocean Wave Energy - Current Status and Future Prospects, Springer-Verlag, Berlin. ISBN 3540748946.
  5. [5]  Falc√£o, A.F. de O. (2010), Wave energy utilization: A review of the technologies, Renewable and Sustainable Energy Reviews, 14, 899-918.
  6. [6]  Heath, T., Whittaker, T.J.T., and Boake, C.B. (2000), The Design, Construction and Operation of the LIMPETWave Energy Converter (Islay, Scotland), In: Proc 4th European Wave Energy Conference, Aalborg, Denmark. Paper B2.
  7. [7]  Setoguchi, T., Santhakumar, S., Maeda, H., Takao, M., and Kaneko, K. (2001), A review of impulse turbines for wave energy conversion, Renewable Energy, 23, 261-292.
  8. [8]
  9. [9]  Whittaker, T., Collier, D., Folley, M., Osterried, M., Henry, A., and Crowley, M. (2007), The development of Oyster - a shallow water surging wave energy converter, In: Proc 7th European Wave Tidal Energy Conference, Porto, Portugal.
  10. [10]  Vicinanza, D., and Frigaard, P. (2008), Wave pressure acting on a seawave slot-cone generator, Coastal Engineering, 55, 553-568.
  11. [11]  Tooru, I., and Tomiji, W. (1999), "Pendulor" Wave Power Conversion System, Journal of Japanese Society Mechanical Engineering, 102, 720-742.
  12. [12]  Henderson, H. (2006), Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter, Renewable Energy, 31, 271-283.
  13. [13]  Palha, A., Mendes, L., Juana Fortes, C., Brito-Melo, A., and Sarmento, A. (2010), The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices, Renewable Energy, 35, 62-77.
  14. [14]  Chaplin, J.R., Farley, F.J.M., Prentice, M.E., Rainey, R.C.T., Rimmer, S.J., and Roach, A.T. (2007), Development of the Anaconda all-rubber WEC, In: Proc European Wave & Tidal Energy Conference, Porto, Portugal.
  15. [15]  Greenhow, M., Vinje, T., Brevig, P., and Taylor, J. (1982), A theoretical and experimental study of the capsize of Salter's duck in extreme waves, Journal of Fluid Mechanics, 118, 221-239.
  16. [16]  Kofoed, J.P., Frigaard, P., Friis-Madsen, E., and S?rensen, H.C. (2006) Prototype testing of the wave energy converter Wave Dragon, Renewable Energy, 31, 181-189.
  17. [17]
  18. [18]  Babarit, A., Clement, A.H., Ruer, J., and Tartivel, C. (2006), Searev: A fully integrated wave energy converter, In: Proc of the Offshore Wind and Other Marine renevwable Energies in Mediterranean Seas (OWEMES) Conference, Rome.
  19. [19]  Bahaj, A.S. (Ed.) (2006), Marine Energy, Special issue of Renewable Energy, 31, 119-284.
  20. [20]  Wiercigroch, M. (2010), A New Concept of Energy Extraction From Waves Via Parametric Pendulor, UK patent application (Pending).
  21. [21]  Koch, B.P., and Leven, R.W. (1985), Subharmonic and homoclinic bifurcations in a parametrically forced pendulum, Physica D, 16, 1-13.
  22. [22]  Szemplinska-Stupnicka, W., Tyrkiel, E., and Zubrzycki, A. (2000), The global bifurcations that lead to transient tumbling chaos in a parametrically driven pendulum, International Journal of Bifurcation and Chaos, 10(9), 2161-2175.
  23. [23]  Szemplinska-Stupnicka,W., and Tyrkiel, E. (2002), The oscillation-rotation attractors in the forced pendulum and their peculiar properties, International Journal of Bifurcation and Chaos, 12, 159-168.
  24. [24]  Garira, W., and Bishop, S.R. (2003), Rotating solutions of the parametrically excited pendulum, Journal of Sound and Vibration, 263, 233-239.
  25. [25]  Xu, X., Wiercigroch, M., and Cartmell, M.P. (2005), Rotating orbits of a parametrically-excited pendulum, Chaos, Solitons and Fractals, 23(5), 1537-1548.
  26. [26]  Xu, X., and Wiercigroch, M. (2007), Approximate Analytical Solutions for Oscillatory and Rotational Motion of a Parametric Pendulum, Nonlinear Dynamics, 47(1-3), 311-320.
  27. [27]  Lenci, S., Pavlovskaia, E., Rega, G., and Wiercigroch, M. (2008), Rotating solutions and stability of parametric pendulum by perturbation method, Journal of Sound and Vibration, 310(1-2), 243-259.
  28. [28]  Lenci, S., and Rega, G. (2008), Competing dynamic solutions in a parametrically excited pendulum: attractor robustness and basin integrity, ASME Journal of Computational and Nonlinear Dynamics, 3(4), 41010.
  29. [29]  Horton, B., Wiercigroch, M., and Xu X. (2008), Transient tumbling chaos and damping identification for parametric pendulum, Philosophycal Transaction of the Royal Society A: Mathematical Physical and Engingeering Sciences, 366, 767-784.
  30. [30]  Horton, B., Sieber, J., Thompson, J.M.T., and Wiercigroch, M. (2011), Dynamics of the nearly parametric pendulum, International Journal of Non-Linear Mechanics, 46(2), 436-442.
  31. [31]  Pavlovskaia, E., Horton, B., Lenci, S., Rega, G., and Wiercigroch, M. (2012), Approximate rotating solutions of pendulum under combined vertical and horizontal excitation at pivot point, International Journal of Bifurcation and Chaos, 22(5), 1250100 (13 pages).
  32. [32]  Horton, B., Lenci, S., Pavlovskaia, E., Romeo, F., Rega, G., andWiercigroch, M. (2013), Stability Boundaries of Period-1 Rotation for a Pendulum Under Combined Vertical and Horizontal Excitation, Journal of Applied Nonlinear Dynamics, 2(2), 103-126.
  33. [33]  Xu, X., Pavlovskaia, E., Wiercigroch, M., Romeo, F., and Lenci, S. (2007), Dynamic interactions between parametric pendulum and electro-dynamical shaker, ZAMM Zeit Ang Math Mech, 87, 172-186.
  34. [34]  Wiercigroch, M., (2007), Private communication.
  35. [35]  Lenci, S., Brocchini, M., and Lorenzoni, C. (2012), Experimental rotations of a pendulum on water waves, ASME Journal of Computational and Nonlinear Dynamics, 7(1), 11007-1-9.
  36. [36]  Lenci, S., Luzi, W., Venturi, E., and Rega, G. (2013), Practical stability of rotating solutions in a parametrically excited experimental pendulum via dynamical integrity concepts, in IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, M. Wiercigroch, G. Rega (Eds), Springer, pp. 173-184. ISBN 978-94-007-5741-7.