Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

CRONE Control: Principles, Extensions and Applications

Journal of Applied Nonlinear Dynamics 2(3) (2013) 207--233 | DOI:10.5890/JAND.2013.08.001

A. Oustaloup; P. Lanusse; J. Sabatier; P. Melchior

University of Bordeaux, IMS Laboratory (CRONE Team), CNRS UMR 5218351 cours de la Liboration, 33405 Talence, France

Download Full Text PDF



This paper is a review paper on CRONE control, a frequency-domain robust control design methodology based on fractional differentiation. Principles of CRONE control are presented. The recent extension of this design methodology to multi-input, multi-output systems and to time varying systems are described. Major applications done during industrial collaborations are briefly described.


  1. [1]  Manabe, S. (1961), The non integer Integral and its Application to control systems, Electrotechnical Journal of Japan, 6(3-4), 83-87.
  2. [2]  Podlubny, I. (1999), Fractional-order systems and PID-controller, IEEE Transactions on Automatic Control, 44(1), 208-214.
  3. [3]  Petras, I. and Dorcak, L. (1999), The frequency method for stability investigation of fractional control systems, Stability and Control: Theory and Applications, 2 (1-2), 75-85 (
  4. [4]  Tenreiro Machado, J.A. (1997), Analysis and design of fractional-order Digital Control Systems, Journal of Systems Analysis, Modelling, Simulation, 27, 107-122.
  5. [5]  Oustaloup, A. (1991), La commande CRONE, Herms Editions, Paris.
  6. [6]  Oustaloup, A. (1991), The CRONE control, in Proceedings of the European Control Conference ECC'91, Grenoble, France, July, 275-280.
  7. [7]  Oustaloup, A. and Mathieu, B. (1999), La commande CRONE: du scalaire au multivariable, Hermes Editions, Paris.
  8. [8]  Kwakernaak, H. (1993), Robust Control and H-Optimization, Automatica, 29(2), 255-273.
  9. [9]  Maciejowski, J.M. (1989), Multivariable Feedback Design, Addison-Wesley, Wokingham, England.
  10. [10]  Horowitz, I.M. and Sidi, M. (1972), Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances, International Journal of Control, 16, 287-309.
  11. [11]  Horowitz, I.M. (1991), Survey of quantitative feedback theory (QFT), International Journal of Control, 53, 255-291.
  12. [12]  Horowitz, I.M. (1993),Quantitative Feedback Design Theory QFT, QFT Publications, Boulder, Colorado.
  13. [13]  Oustaloup, A. (1975), Etude et ralisation d'un systme d'asservissement d'ordre 3/2 de la frquence d'un laser colorant continu, PhD Thesis, Universit Bordeaux I, France.
  14. [14]  Oustaloup, A. (1983), Systmes Asservis Lineaire Dordre Fractionnaire, Masson Editions, Paris.
  15. [15]  Bode, H.W. (1945), Network Analysis and Feedback Amplifier Design, Van Nostrand, New York.
  16. [16]  Oustaloup, A., Mathieu, B., and Lanusse, P. (1995), Intgration non entire complexe et contours d'isoamortissement, Automatique, Productique, Informatique Industrielle, 29(1), 177-202.
  17. [17]  Oustaloup, A., Mathieu, B., Lanusse, P., and Sabatier, J. (1996), La commande CRONE : de la robustesse fractale un gbarit curviligne en boucle ouverte, Chapter 6 of Commande robuste: developpements et applications, Herms Editions, Paris.
  18. [18]  Oustaloup, A., Levron, F., Nanot, F., and Mathieu, B. (2000), Frequency band complex non integer differentiator: characterization and synthesis, IEEE Transactions on Circuits and Systems, 47(1), 25-40.
  19. [19]  Oustaloup, A., Mathieu, B., and Lanusse, P. (1995), The CRONE control of resonant plants: application to a flexible transmission, European Journal of Control, 1(2), 113-121.
  20. [20]  Lanusse, P., Oustaloup, A., and Mathieu, B. (2000), Robut control of LTI MIMO plants using two CRONE control design approaches, in Proceedings of the IFAC symposium on Robust Control Design, ROCOND'2000, Prague, Czech Republic, June.
  21. [21]  Nelson-Gruel, D., Lanusse, P., and Oustaloup, A. (2008), Decentralized CRONE control of m×n multivariable system with time-delay, 3nd IFAC Workshop on "Fractional Differentiation and its Applications" (FDA'08) - Ankara, Turquie.
  22. [22]  Nelson-Gruel, D., Lanusse, P., and Oustaloup, A. (2009), Robust control design for multivariable plants with time-delays, Chemical Engineering Journal, 146 (3), 414-427.
  23. [23]  Pommier, V., Lanusse, P., Sabatier, J., and Oustaloup, A.(2001), Input-Output linearisation and fractional robust control of a non linear plant, in Proceedings of European control conference ECC2001, Porto, Protugal, September, 1553-1558.
  24. [24]  Pommier-Buninger, V., Lanusse, P., Sabatier, J., and Oustaloup, A. (2006), Fractional robust control of a nonlinear plant: Control of a nonlinear testing bench using the singular perturbation technique and the CRONE approach, JESA, 40 (2).
  25. [25]  Sabatier, J., Oustaloup, A., Lanusse, P., and Robin, G. (1995), Optimal CRONE control of a wire guided robot, in Proceedings of 7th International Conference on Advanced Robotics ICAR95, Sant Feliu de Guixols, Spain, September, 356-363.