Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Path Tracking Design by Fractional Prefilter Using a Combined QFT/Hꝏ Design for TDOF Uncertain Feedback Systems

Journal of Applied Nonlinear Dynamics 1(3) (2012) 239--261 | DOI:10.5890/JAND.2012.07.003

Najah Yousfi$^{1}$, Pierre Melchior$^{2}$, Chokri Rekik$^{1}$, Nabil Derbel$^{1}$, Alain Oustaloup$^{2}$

$^{1}$ Research Unit on Intelligent Control, Design & Optimization of Complex Systems (ICOS) University of Sfax, Sfax Engineering School, BP W, 3038 Sfax, Tunisia

$^{2}$ IMS (UMR 5218 CNRS, Université Bordeaux 1-ENSEIRB-ENSCPB), Département LAPS 351 cours de la Liberation, Bâ. A4 - F33405 TALENCE cedex, France

Download Full Text PDF



The objective of this work concerns the motion control and robust path tracking. A method based on fractional prefilter has been developed and extended to multivariable systems. It is based on the MIMO-QFT robust synthesis methodology. This method secifically deals with the appropriate transformation of the MIMO system to the equivalent SISO system. This paper presents a way to incorporate Quantitative Feedback Theory (QFT) principles to Hꝏ control design procedure to solve the Two-Degree-Of-Freedom (TDOF) with Highly Uncertain Plants. The SISO-QFT synthesis method can be used for each SISO loop. Then the controllers are synthesized using the Hꝏ design. After that, synthesis of prefilters is given with optimization of its parameters using integral error minimization. Finally a numerical example is considered to show performances of the proposed method.


  1. [1]  Melchior, P., Orsoni, B., Badie, Th. and Robin, G. (2000), Gnration de consigne optimale par filtre drive gnralise implicite: Application au vhicule lectrique, IEEE CIFA' 2000, Lille, France.
  2. [2]  Poty, A., Melchior, P. and Oustaloup, A. (2006), Frequency band-limited fractional differentiator in path tracking design, Second IFAC Workshop on Fractional Differentiation and its Applications, Portugal.
  3. [3]  Poty, A. (2006), Planification de trajectoire dans un environnement dynamique et gnration de mouvement d'ordre non entier, PhD thesis, University of Bordeaux 1, France.
  4. [4]  Orsoni, B., Melchior, P. and Oustaloup, A. (2001), Davidson-Cole transfer function in path tracking design, Proceedings of the 6th IEEE-ECC'2001, Porto, Portugal, 1174-1179, September 4-7.
  5. [5]  Melchior, P., Robin, G., L'Hostis, S. and Levron, F. (1998), Non integer order movement generation in path planning, in:Proc. of IEEE-SMC CESA 98 IMACS, Nabeul-Hammamet, Tunisia, 4, 371-375, April 1-4.
  6. [6]  Melchior, P., Inarn, C. and Oustaloup, A. (2009), Pate Tracking Design by Fractional Prefilter Extension TO Square Mimo Systems, in: Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, California, USA.
  7. [7]  Horowitz, I. (1963), Synthesis of Feedback Systems, Academic Press, New York.
  8. [8]  Horowitz, I. (2001), Survey of quantitative feedback theory (QFT), International Journal of Robust and Nonlinear Control, 11, 887-921,
  9. [9]  Horowitz, I. (1979), Quantitative synthesis of uncertain multiple input- output feedback system, International Journal of Control, 30(1), 81-106.
  10. [10]  Horowitz, I. and Sidi, M. (1972), Synthesis of feedback systems for prescribed time-domain tolerances, International Journal of Control, 16(2), 287-309.
  11. [11]  Mohammad, S., Alavi, M., Khaki Sedigh, A. and Labibi, B. (2005), Pre-Filter Design for Tracking Error Specifications in MIMO-QFT, in: 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain.
  12. [12]  Cheng, C.C., Liao, Y.K. and Wang, T.S. (1996), Quantitative feedback design of uncertain multivariable control system, International Journal of Control, 65(3), 537-553.
  13. [13]  Boje, E. (2002), Non-diagonal controllers in MIMO quantitative feedback design, International Journal of Robust and Nonlinear Control.
  14. [14]  Zenghui, W., Zengqiang, C., Qinglin, Zhuzh, S.Y. (2006), Multivariable Decoupling Predictive Control Based on QFT Theory and Application in CSTR Chemical Process, Chinese J. Chem. Eng.
  15. [15]  Skogestad, S. and Postlethwaite, I. (1996), Multivariable feedback control, Analysis and design, JHON WILEY & SONS, New York.
  16. [16]  Scorletti, G., AUTO, G. and Fromion, V. (2005), Introduction la commande multivariable des systmes : mthodes de synthse frquentielle Hꝏ, France.
  17. [17]  Duc, G. and Font, S. (1999), Commande Hꝏ et μ-analyse, Hermes, Paris.
  18. [18]  Zames, G. (1976),Feed back and copmplexity, IEEE Conf. Dec. Control.
  19. [19]  Sidi, M. (1999), A Combined QFT/Hꝏ Design Technique for TDOF Uncertain Feedback Systems, Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99), Haifa, Israel.
  20. [20]  Orsoni, B. (2002), Drive gnralise en planification de trajectoire et gnration de mouvement, PhD thesis, University of Bordeaux 1, France.
  21. [21]  Oustaloup, A. (1995), La Drivation Non Entire : Thorie, Synthse et Application, Herms Ed., Paris.
  22. [22]  Doyle, J. and Stein, G. (1981). Multivariable Design: Concepts for a Classical/Modern Synthesis, IEEE Trans. on Automatic Control, vol. AC-26 (1).
  23. [23]  Stein, G. and Athans, M. (1987), The LQG/LQR Procedure for Multivariable Feedback Control Design, IEEE Trans. on Automatic Control, vol. AC-32(2).
  24. [24]  Oustaloup, A. Melchior, P., Lanusse, P. Cois, O. andDancla, F. (2000), The CRONE toolbox for Matlab, IEEE Int. Symp. on Computer-Aided Control-System Design, Anchorage, USA.