Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Analytical Routes of Period-1 Motions to Chaos in a Periodically Forced Duffing Oscillator with a Twin-well Potential

Journal of Applied Nonlinear Dynamics 1(1) (2012) 73--108 | DOI:10.5890/JAND.2012.02.002

Albert C. J. Luo; Jianzhe Huang

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL62026-1805, USA

Download Full Text PDF

 

Abstract

In this paper, analytical routes of period-1 motions to chaos in the Duffing oscillator with a twin-potential well are investigated through the generalized harmonic balance method. The analytical solutions of period-m motions are presented by the Fourier series, and the corresponding Hopf bifurcation of periodic motions leads to new periodic motions with period-doubling. Three analytical routes of asymmetric period-1 motions to chaos are presented comprehensively. To verify approximate, analytical periodic solutions, numerical simulations are carried out. In the analytical routes, the unstable periodic motions are presented, and such analytical routes with unstable periodic motions can help one find unstable chaos. Such unstable chaos cannot be obtained simply via the time going to infinity (i.e., t→ꝏ)

References

  1. [1]  Duffing, G. (1918), Erzwunge Schweingungen bei veranderlicher eigenfrequenz, Braunschweig: F. Viewig u. Sohn.
  2. [2]  Hayashi, G. (1964), Nonlinear oscillations in Physical Systems, McGraw-Hill Book Company, New York.
  3. [3]  Nayfeh, A.H. (1973), Perturbation Methods, John Wiley, New York.
  4. [4]  Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillation, JohnWiley, New York.
  5. [5]  Holmes, P.J. (1979),A nonlinear oscillator with strange attractor, Philosophical Transactions of the Royal Society A, 292, 419-448.
  6. [6]  Ueda, Y. (1980), Explosion of strange attractors exhibited by the Duffing equations, Annuals of the New York Academy of Science, 357, 422-434.
  7. [7]  Luo, A.C.J. and Han, R.P.S. (1997), A quantitative stability and bifurcation analyses of a generalized Duffing oscillator with strong nonlinearity, Journal of Franklin Institute, 334B, 447-459.
  8. [8]  Han, R.P.S. and Luo, A.C.J. (1996), Comments on "Subharmonic resonances and criteria for escape and chaos in a driven oscillator", Journal of Sound and Vibration, 196(2), 237-242.
  9. [9]  Luo, A.C.J. and Han, R.P.S. (1999), Analytical predictions of chaos in a nonlinear rod, Journal of Sound and Vibration, 227(2), 523-544.
  10. [10]  Lagrange, J.L. (1788), Mecanique Analytique (2 vol.)(edition Albert Balnchard, Paris, 1965).
  11. [11]  Poincare, H. (1899), Methodes Nouvelles de la Mecanique Celeste, Vol.3, Gauthier-Villars, Paris.
  12. [12]  van der Pol, B. (1920), A theory of the amplitude of free and forced triode vibrations, Radio Review, 1, 701-710, 754-762.
  13. [13]  Fatou, P. (1928), Sur le mouvement d'un systeme soumis 'a des forces a courte periode, Bull. Soc. Math. 56, 98-139
  14. [14]  Krylov, N.M. and Bogolyubov, N.N. (1935), Methodes approchees de la mecanique non-lineaire dans leurs application a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s'y rapportant, Academie des Sciences d'Ukraine: Kiev. (in French).
  15. [15]  Barkham, P.G.D. and Soudack,A.C. (1969),An extension to themethod of Krylov and Bogoliubov, International Journal of Control, 10, 377-392.
  16. [16]  Barkham, P.G.D. and Soudack, A.C.(1970), Approximate solutions of nonlinear, non-autonomous second-order differential equations, International Journal of Control, 11, 763-767.
  17. [17]  Garcia-Margallo J. and Bejarano, J.D. (1987), A generalization of the method of harmonic balance, Journal of Sound and Vibration, 116, 591-595.
  18. [18]  Rand, R.H. and Armbruster, D. (1987), Perturbation Methods, Bifurcation Theory, and Computer Algebra. Applied Mathematical Sciences, no. 65, Springer-Verlag, New York.
  19. [19]  Yuste, S.B. and Bejarano, J.D. (1989), Extension and improvement to the Krylov-Bogoliubov method that use elliptic functions, International Journal of Control, 49, 1127-1141.
  20. [20]  Coppola, V.T. and Rand, R.H. (1990), Averaging using elliptic functions: Approximation of limit cycle, Acta Mechanica, 81, 125-142.
  21. [21]  Peng, Z.K., Lang, Z.Q., Billings, S.A. and Tomlinson, G.R. (2008), Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis, Journal of Sound and Vibration, 311, 56-73.
  22. [22]  Luo, A.C.J. and Huang, J.Z. (2011), Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance, Journal of Vibration and Control, in press.
  23. [23]  Luo, A.C.J. and Huang, J.Z. (2011), Analytical dynamics of period-m flows and chaos in nonlinear systems, International Journal of Bifurcation and Chaos, in press.
  24. [24]  Luo, A.C.J. (2011), Regularity and Complexity in Dynamical Systems, Springer, New York.