ISSN:2164-6457 (print)
ISSN:2164-6473 (online)
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu

Two Kinds of Multiple Wave Solutions for the Potential YTSF Equation and a Potential YTSF-Type Equation

Journal of Applied Nonlinear Dynamics 1(1) (2012) 51--58 | DOI:10.5890/JAND.2012.01.001

Abdul-Majid Wazwaz

Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA

Abstract

n this work, we study the (3+1)-dimensional YTSF equation and a YTSF-type equation. We derive two kinds of multiple wave solutions for each equation. The simplified form of the direct method will be used to conduct the analysis.

References

1.  [1] Wazwaz, A.M. (2008),Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, JimboMiwa and YTSF equations, Appl. Math. Comput., 203, 592-597.
2.  [2] Wazwaz,A.M. (2008), New solutions of distinct physical structures to high-dimensional nonlinear evolution equations, Appl. Math. Comput., 196, 363-370.
3.  [3] Kobayashi, T. and K. Toda (2006), The PainlevĂ© test and reducibility to the canonical forms for higherdimensional soliton equations with variable-coefficients, Symm. Integr. and Geom.:Methods and Applications, 2, 1-10.
4.  [4] Kadomtsev, B.B. and Petviashvili, V.I. (1970), On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15, 539-541.
5.  [5] Yu, S.J., Toda, K., Sasa, N., and Fukuyama, T. (1998), N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3+1) dimensions, J. Phys. A: Math. Gen., 31, 3337-3347.
6.  [6] Tang, X.Y., and Liang,Z.F. (2006), Variable separtion solutions for the (3+1)-dimensional Jimbo-Miwa equation, Phys. Lett. A, 351, 398-402.
7.  [7] Hu, X.-B., Wang, D.-L., Tam, H.-W., and Xue,W.-M. (1999). Soliton solutions to the Jimbo-Miwa equation and the Fordy-Gibbons-Jimbo-Miwa equation, Phys. Lett. A, 262, 310-320.
8.  [8] Liu, X.-Q., and Jiang, S. (2004), New solutions of the (3+1)-dimensional Jimbo-Miwa equation, Appl. Math. Comput., 158, 177-184.
9.  [9] Wang, D., Sun, W., Kong, C., and Zhang, H. ( 2007), New extended rational expansion method and exact solutions of Boussinesq equation and Jimbo-Miwa equations, Appl. Math. Comput., 189, 878-886.
10.  [10] Kichenassamy, S. and Olver, P. (1992), Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal., 23(5), 1141-1166.
11.  [11] HeremanW. and Nuseir, A. (1997), Symbolic methods to construct exact solutions of nonlinear partial differential equations, Mathematics and Computers in Simulation, 43, 13-27.
12.  [12] Wazwaz,A.M. (2009), Partial Differential Equations and Solitary Waves Theorem, Springer and HEP, Berlin- Beijing.
13.  [13] Wazwaz, A.M. (2007),New solitons and kinks solutions to the Sharma-Tasso-Olver equation, Appl. Math. Comput., 188, 1205-1213.
14.  [14] Wazwaz, A.M. (2007), New solitary wave and periodic wave solutions to the (2+1)-dimensional Nizhnik- Novikov-Veselov system, Appl. Math. . Comput., 187, 1584-1591.