Discontinuity, Nonlinearity, and Complexity
Qualitative Analysis of Nonlinear Generalized Caputo Fractional Volterra-Fredholm System
Discontinuity, Nonlinearity, and Complexity 15(2) (2026) 211--222 | DOI:10.5890/DNC.2026.06.006
Mohammed S. Bani Issa
Department of Mathematics, Ajyal International School- Al Falah, Abu Dhabi, UAE
Download Full Text PDF
Abstract
The nonlocal Volterra-Fredholm system for a class of nonlinear fractional $\psi$-Caputo integro-differential equations of Sobolev type in Banach spaces is examined in this study. The $\psi$-Caputo fractional derivative generalizes the classical Caputo derivative by incorporating a function $\psi$, allowing greater flexibility in modeling memory effects. We first establish novel Darbo-type fixed point theorems. These theorems are then applied to derive a solvability theorem for the nonlocal Volterra-Fredholm problem associated with nonlinear fractional equations of Sobolev type. Furthermore, we provide an example to show how our theoretical findings might be applied. These results have potential applications in physics and engineering, particularly in modeling complex systems with memory and hereditary properties.
References
-
| [1]  |
Hilfer, R. (2000), Applications of Fractional Calculus in Physics, World Scientific, Singapore.
|
-
| [2]  |
Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.
|
-
| [3]  |
Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam.
|
-
| [4]  |
Podlubny, I. (1999), Fractional Differential Equations: Mathematics in Science and Engineering, Vol. 198, Academic Press, New York.
|
-
| [5]  |
Almeida, R. (2017), A Caputo fractional derivative of a function with respect to another function, Communications in Nonlinear Science and Numerical Simulation, 44, 460-481.
|
-
| [6]  |
Atshan, S.M. and Hamoud, A.A. (2024), Qualitative analysis of ABR-fractional Volterra-Fredholm system, Nonlinear Functional Analysis and Applications, 29(1), 113-130.
|
-
| [7]  |
Anguraj, A., Karthikeyan, P., Rivero, M., and Trujillo, J.J. (2014), On new existence results for fractional integro-differential equations with impulsive and integral conditions, Computers $\&$ Mathematics with Applications, 66, 2587-2594.
|
-
| [8]  |
El-Borai, M. (2002), Some probability densities and fundamental solutions of fractional evolution equations, Chaos, Solitons $\&$ Fractals, 14, 433-440.
|
-
| [9]  |
Chalishajar, D.N., Anguraj, A., Malar, K., and Karthikeyan, K. (2016), A study of controllability of impulsive neutral evolution integro-differential equations with state-dependent delay in Banach spaces, Mathematics, 2016, 1-14.
|
-
| [10]  |
Banach, S. (1922), Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133-181.
|
-
| [11]  |
Brouwer, L.E.J. (1911), Ãber Abbildung von Mannigfaltigkeiten, Mathematische Annalen, 71, 97-115.
|
-
| [12]  |
Schauder, J. (1930), Der Fixpunktsatz in Funktionalräumen, Studia Mathematica, 2, 171-180.
|
-
| [13]  |
Kakutani, S. (1941), A generalization of Brouwer's fixed point theorem, Duke Mathematical Journal, 7, 457-459.
|
-
| [14]  |
Darbo, G. (1955), Punti uniti in trasformazioni a condominio non compatto, Rendiconti del Seminario Matematico della Università di Padova, 24, 84-92.
|
-
| [15]  |
Berzig, M. (2013), Generalization of the Banach Contraction Principle, arXiv:1310.0995.
|
-
| [16]  |
Samadi, A. and Ghaemi, M.B. (2014), An extension of Darbo's theorem and its application, Abstract and Applied Analysis, Article ID 852324, 11 pp.
|
-
| [17]  |
Cai, L. and Liang, J. (2015), New generalizations of Darbo's fixed point theorem, Fixed Point Theory and Applications, 2015, 156, 8 pp.
|
-
| [18]  |
Cai, L., Liang, J., and Zhang, J. (2018), Generalizations of Darbo's fixed point theorem and solvability of integral and differential systems, Journal of Fixed Point Theory and Applications, 20, Paper No. 86, 20 pp.
|
-
| [19]  |
Aronszajn, N. and Panitchpakdi, P. (1956), Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific Journal of Mathematics, 6, 405-439.
|
-
| [20]  |
Bardaro, C. and Ceppitelli, R. (1988), Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, Journal of Mathematical Analysis and Applications, 132, 484-490.
|
-
| [21]  |
Czerwik, S. (1993), Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1, 5-11.
|
-
| [22]  |
Hamoud, A. and Ghadle, K. (2019), Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, Journal of Applied and Computational Mechanics, 5(1), 58-69.
|
-
| [23]  |
Hamoud, A.A., Chahra, K., Abdelouaheb, A., Homan, E.Z., Atul, K., and Laith, A. (2026), On Hadamard-Caputo implicit fractional integro-differential equations with boundary fractional conditions, Kragujevac Journal of Mathematics, 50(3), 491-504.
|
-
| [24]  |
Hamoud, A.A., Bani Issa, M.S., and Ghadle, K.P. (2018), Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Functional Analysis and Applications, 23(4), 797-805.
|
-
| [25]  |
Jameel, S.A.M., Rahman, S.A., and Hamoud, A.A. (2024), Analysis of Hilfer fractional Volterra-Fredholm system, Nonlinear Functional Analysis and Applications, 29(1), 259-273.
|
-
| [26]  |
Kuratowski, C. (1930), Sur les espaces complets, Fundamenta Mathematicae, 15, 301-309.
|
-
| [27]  |
Banas, J. and Goebel, K. (1980), Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York.
|
-
| [28]  |
Liang, J., Mu, Y., and Xiao, T.-J. (2022), Nonlocal integro-differential equations of Sobolev type in Banach spaces involving $\psi$-Caputo fractional derivative, Banach Journal of Mathematical Analysis, 16, Paper No. 3, 29 pp.
|
-
| [29]  |
Guo, D. (1992), Impulsive integral equations in Banach spaces and applications, Journal of Applied Mathematics and Stochastic Analysis, 5, 111-122.
|
-
| [30]  |
Jameel, S.A.M. and Hamoud, A.A. (2025), On nonlinear generalized Caputo fractional implicit Volterra-Fredholm model, Discontinuity, Nonlinearity, and Complexity, 14(2), 439-450.
|
-
| [31]  |
Liang, J. and Xiao, T.-J. (2004), Solvability of the Cauchy problem for infinite delay equations, Nonlinear Analysis, 58, 271-297.
|