Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A New 4-D Chaotic Hyperjerk System with One Stable Equilibrium: Multistability, Hopf Bifurcation Analysis and Application to Pseudorandom Bit Generator

Discontinuity, Nonlinearity, and Complexity 15(1) (2026) 23--35 | DOI:10.5890/DNC.2026.03.003

Savvas Kosmidis, Efthymia Meletlidou, Christos Volos

Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

Download Full Text PDF

 

Abstract

In this paper, a novel 4-D hyperjerk system with one stable equilibrium at the origin is presented. The system is constructed via a specific procedure and the stability of the equilibrium is determined by Routh-Hurwitz criterion. Numerical investigation of the system by using the bifurcation diagram, phase portraits, Lyapunov exponents and basins of attractions uncovers its chaotic dynamics and multistability. Also, the projection method of Kuznetzov is followed in order to study the Hopf bifurcation of the system. In addition, a pseudorandom bit generator is introduced. The pseudorandom bit sequence is generated by a chaotic solution of the system and the randomness of the bitstream is confirmed by NIST 800-22.

References

  1. [1]  Leonov, G.A., Kuznetsov, N.V., and Mokaev, T.N. (2015), Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, The European Physical Journal Special Topics, 224, 1421-1458.
  2. [2]  Lorenz, E.N. (1963), Deterministic nonperiodic flow, Journal of Atmospheric Sciences, 20(2), 130-141.
  3. [3]  Chen, G. and Ueta, T. (1999), Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9(7), 1465-1466.
  4. [4]  Lü, J. and Chen, G. (2002), A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12(3), 659-661.
  5. [5]  Shilnikov, L.P. (1965), A case of the existence of a denumerable set of periodic motions, Doklady Akademii Nauk, 6, 163-166.
  6. [6]  Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H. (2013), Elementary quadratic chaotic flows with no equilibria, Physics Letters A, 377(9), 699-702.
  7. [7]  Molaie, M., Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H. (2013), Simple chaotic flows with one stable equilibrium, International Journal of Bifurcation and Chaos, 23(11), 1350188.
  8. [8]  Jafari, S. and Sprott, J. (2013), Simple chaotic flows with a line equilibrium, Chaos, Solitons \& Fractals, 57, 79-84.
  9. [9]  Barati, K., Jafari, S., Sprott, J.C., and Pham, V.T. (2016), Simple chaotic flows with a curve of equilibria, International Journal of Bifurcation and Chaos, 26(12), 1630034.
  10. [10]  Jafari, S., Sprott, J.C., Pham, V.T., Volos, C., and Li, C. (2016), Simple chaotic 3D flows with surfaces of equilibria, Nonlinear Dynamics, 86, 1349-1358.
  11. [11]  Wang, X. and Chen, G. (2012), A chaotic system with only one stable equilibrium, Communications in Nonlinear Science and Numerical Simulation, 17(3), 1264-1272.
  12. [12]  Sprott, J.C. (1994), Some simple chaotic flows, Physical Review E, 50(2), R647.
  13. [13]  Wei, Z. and Wang, Z. (2013), Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium, Kybernetika, 49(2), 359-374.
  14. [14]  Wei, Z., Moroz, I., and Liu, A. (2014), Degenerate Hopf bifurcations, hidden attractors, and control in the extended Sprott E system with only one stable equilibrium, Turkish Journal of Mathematics, 38(4), 672-687.
  15. [15]  Pham, V.T., Jafari, S., Kapitaniak, T., Volos, C., and Kingni, S.T. (2017), Generating a chaotic system with one stable equilibrium, International Journal of Bifurcation and Chaos, 27(4), 1750053.
  16. [16]  Deng, Q., Wang, C., and Yang, L. (2020), Four-wing hidden attractors with one stable equilibrium point, International Journal of Bifurcation and Chaos, 30(6), 2050086.
  17. [17]  MD, V., Karthikeyan, A., Zivcak, J., Krejcar, O., and Namazi, H. (2021), Dynamical behavior of a new chaotic system with one stable equilibrium, Mathematics, 9(24), 3217.
  18. [18]  Singh, J.P., Rajagopal, K., and Roy, B.K. (2018), A new 5D hyperchaotic system with stable equilibrium point, transient chaotic behaviour and its fractional-order form, Pramana, 91, 1-10.
  19. [19]  Deng, Q. and Wang, C. (2019), Multi-scroll hidden attractors with two stable equilibrium points, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(9), 093122.
  20. [20]  Schot, S.H. (1978), Jerk: the time rate of change of acceleration, American Journal of Physics, 46(11), 1090-1094.
  21. [21]  Sprott, J.C. and Linz, S.J. (2000), Algebraically simple chaotic flows, International Journal of Chaos Theory and Applications, 5(2), 1-20.
  22. [22]  Chlouverakis, K.E. and Sprott, J. (2006), Chaotic hyperjerk systems, Chaos, Solitons \& Fractals, 28(3), 739-746.
  23. [23]  Vaidyanathan, S., Volos, C., Pham, V.T., and Madhavan, K. (2015), Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation, Archives of Control Sciences, 25(1), 135-158.
  24. [24]  Vaidyanathan, S. (2016), Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system via backstepping control method, Archives of Control Sciences, 26(3), 311-338.
  25. [25]  Ahmad, I., Srisuchinwong, B., and San-Um, W. (2018), On the first hyperchaotic hyperjerk system with no equilibria: A simple circuit for hidden attractors, IEEE Access, 6, 35449-35456.
  26. [26]  Prousalis, D.A., Volos, C.K., Stouboulos, I.N., and Kyprianidis, I.M. (2017), A hyperjerk memristive system with infinite equilibrium points, AIP Conference Proceedings, 1872(1), 020024.
  27. [27]  Singh, J.P., Pham, V.T., Hayat, T., Jafari, S., Alsaadi, F.E., and Roy, B.K. (2018), A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control, Chinese Physics B, 27(10), 100501.
  28. [28]  Kapitaniak, T. and Leonov, G.A. (2015), Multistability: Uncovering hidden attractors, The European Physical Journal Special Topics, 224, 1405-1408.
  29. [29]  Bao, B.C., Bao, H., Wang, N., Chen, M., and Xu, Q. (2017), Hidden extreme multistability in memristive hyperchaotic system, Chaos, Solitons \& Fractals, 94, 102-111.
  30. [30]  Sprott, J.C., Jafari, S., Khalaf, A.J.M., and Kapitaniak, T. (2017), Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping, The European Physical Journal Special Topics, 226, 1979-1985.
  31. [31]  Tsoi, K. (2003), Compact FPGA-based true and pseudo random number generators, in Proceedings of IEEE Annual Symposium on Field-Programmable Custom Computing Machines (FCCM), IEEE Computer Society, 51-61.
  32. [32]  Sharma, M., Ranjan, R.K., and Bharti, V. (2022), A pseudo-random bit generator based on chaotic maps enhanced with a bit-XOR operation, Journal of Information Security and Applications, 69, 103299.
  33. [33]  Kosmidis, S., Volos, C., Moysis, L., and Meletlidou, E. (2024), A novel chaotic system with hyperbolic tangent terms and its application to random bit generator and image encryption, Journal of Vibration Testing and System Dynamics, 8(3), 341-353.
  34. [34]  Bassham, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Leigh, S.D., and Banks, D.L. (2010), A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22.
  35. [35]  Akgul, A., Gurevin, B., Pehlivan, I., Yildiz, M., Kutlu, M.C., and Guleryuz, E. (2021), Development of micro computer based mobile random number generator with an encryption application, Integration, 81, 1-16.
  36. [36]  Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985), Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16(3), 285-317.
  37. [37]  Ott, E. (2002), Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
  38. [38]  Grassberger, P. and Procaccia, I. (1983), Measuring the strangeness of strange attractors, Physica D: Nonlinear Phenomena, 9(1-2), 189-208.
  39. [39]  Kuznetsov, Y.A. (1998), Elements of Applied Bifurcation Theory, 112, Springer, New York.