Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A New Development in Topological Analysis of Propane Para-Line Graphs with Application in Chemical Composition

Discontinuity, Nonlinearity, and Complexity 14(4) (2025) 659--668 | DOI:10.5890/DNC.2025.12.004

Mukhtar Ahmad$^{1}$, Yuhani Binti Yusof$^{1}$, Ather Qayyum$^{2}$, Laxmi Rathour$^{3,\dagger}$, Vinay Singh$^{3}$,\\ Lakshmi Narayan Mishra$^{4}$

$^1$ Department of Mathematics, Khawaja Fareed University of Engineering and Information Technology R.Y.K, Pakistan

$^2$ Department of Mathematics, University of Southern Punjab Multan Pakistan

$^3$ Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl 796 012, Mizoram, India

$^4$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India

Download Full Text PDF

 

Abstract

123 Topological indices are powerful tools in various fields of science and engineering. It also assist in assessing the environmental impact, biodegradability, and toxicity of chemical substances, supporting the creation of safer and more sustainable chemicals. It can be defined as a mapping from the molecular structure of a substance to a real number. Its purpose is to characterize the physicochemical properties of specific substances while maintaining its invariance under graph transformations. Molecular descriptors play a crucial role in mathematical chemistry, particularly in investigations involving quantitative structure-property relationships and quantitative structure-activity relationships. In the context of this study, we investigated the chemical composition of pentacene, focusing on various indices, including the general randić connectivity index, the first and second multiple zagreb indices, the first general zagreb index, the atomic bond connectivity index, the hyper-zagreb index, and the geometric-arithmetic index for propane paraline graphs of linear-pentacene, multi-pentacene and linear [n]-pentacene.

References

  1. [1]  Li, X. and Shi, Y. (2008), A survey on the Randic' index, MATCH Communications in Mathematical and in Computer Chemistry, 59(1), 127-156. DOI: 10.46793/match.90-2.495L.
  2. [2]  Li, X., Shi, Y., and Wang, L. (2008), An updated survey on the Randic' index, in: B.F. I. Gutman (Ed.), Recent Results in the Theory of Randic Index, University of Kragujevac and Faculty of Science Kragujevac, 9-47.
  3. [3]  Mufti, Z.S., Zafar, S., Zahid, Z., and Nadeem, M.F. (2017), Study of the paraline graphs of certain Benzenoid structures using topological indices, MAGNT Research Report, 4(3), 110-116.
  4. [4]  Rada, J. and Cruz, R. (2014), Vertex-degree-based topological indices over graphs, MATCH Communications in Mathematical and in Computer Chemistry, 72, 63-616. DOI: 10.1007/s10910-011-9876-6.
  5. [5]  Hinz, A.M. and Parisse, D. (2012), The average eccentricity of Sierpiński graphs, Graphs and Combinatorics, 28(5), 671-686. DOI: 10.1007/s00373-011-1076-4.
  6. [6]  Devillers, J. and Balaban, A.T. (2000), Topological Indices and Related Descriptors in QSAR and QSPAR, CRC Press.
  7. [7]  Azari, M. and Iranmanesh, A. (2014), Harary index of some nano-structures, MATCH Communications in Mathematical and in Computer Chemistry, 71, 373-382. DOI: 10.46793/match.90-2.495L.
  8. [8]  Feng, L., Liu, W., Yu, G., and Li, S. (2014), The hyper-Wiener index of graphs with given bipartition, Utilitas Mathematica, 95, 23-32.
  9. [9]  Soleimani, N., Mohseni, E., Maleki, N., and Imani, N. (2018), Some topological indices of the family of nanostructures of polycyclic aromatic hydrocarbons (PAHs), Journal of the National Science Foundation of Sri Lanka, 46(1). DOI: 10.4038/jnsfsr.v46i1.8267.
  10. [10]  Soleimani, N., Nikmehr, M.J., and Tavallaee, H.A. (2014), Theoretical study of nanostructures using topological indices, Studia Universitatis Babeș-Bolyai Chemia, 59(4), 139-148.
  11. [11]  Husain, S., Gupta, S., and Mishra, V.N. (2013), Graph convergence for the H(.,.)-mixed mapping with an application for solving the system of generalized variational inclusions, Fixed Point Theory and Applications, 304. DOI: 10.1186/10.1186/1687-1812-2013-304.
  12. [12]  Mishra, V.N., Delen, S., and Cangul, I.N. (2018), Algebraic structure of graph operations in terms of degree sequences, International Journal of Analysis and Applications, 16(6), 809-821. DOI: 10.28924/2291-8639-16-2018-809.
  13. [13]  Mishra, V.N., Delen, S., and Cangul, I.N. (2019), Degree sequences of join and corona products of graphs, Electronic Journal of Mathematical Analysis and Applications, 7(1), 5-13.
  14. [14]  Goyal, S., Garg, P., and Mishra, V.N. (2020), New corona and new cluster of graphs and their Wiener index, Electronic Journal of Mathematical Analysis and Applications, 8(1), 100-108.
  15. [15]  Gowri, S., Venkatachalam, M., Mishra, V.N., and Mishra, L.N. (2021), On $r$-dynamic coloring of double star graph families, Palestine Journal of Mathematics, 10(1), 53-62.
  16. [16]  Praveena, K., Venkatachalam, M., Rohini, A., and Mishra, V.N. (2021), Equitable coloring on subdivision-vertex join and subdivision-edge join of graphs, Italian Journal of Pure and Applied Mathematics, 46, 836-849.
  17. [17]  Goyal, S., Jain, D., and Mishra, V.N. (2023), Wiener index of sum of shadowgraphs, Discrete Mathematics, Algorithms and Applications, 15(1), Article No.: 2250068.
  18. [18]  Kashif, R.M., Mukhtar, A., Qayyum, A., Supadi, S.S., Hussain, M.J., and Raza, S. (2023), On degree-based topological indices of Toeplitz graphs, International Journal of Analysis, 21, 111. DOI: 10.28924/2291-8639-21-2023-111.
  19. [19]  Li, X. and Zhao, H. (2004), Trees with the first three smallest and largest generalized topological indices, MATCH Communications in Mathematical and in Computer Chemistry, 50, 57-62.
  20. [20]  Zhou, B. and Trinajstic, N. (2010), On general sum-connectivity index, Journal of Mathematical Chemistry, 47, 210-218.
  21. [21]  Estrada, E., Torres, L., Rodriguez, L., and Gutman, I. (1998), An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry, 37A, 849-855. DOI: 10.1007/s10910-022-01403-1.
  22. [22]  Vukicevic, D. and Furtula, B. (2009), Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, Journal of Mathematical Chemistry, 46, 1369-1376. DOI: 10.1016/j.dam.2011.06.020.
  23. [23]  Ghorbani, M. and Hosseinzadeh, M.A. (2010), Computing ABC4 index of nanostar dendrimers, Optoelectronics and Advanced Materials - Rapid Communications, 4(9), 1419-1422. DOI: 10.12732/ijpam.v117i1.10.
  24. [24]  Graovac, A., Ghorbani, M., and Hosseinzadeh, M.A. (2011), Computing fifth geometric-arithmetic index for nanostar dendrimers, Journal of Mathematical Nanoscience, 1, 33-42.
  25. [25]  Muhammad, N., Mukhtar, A., Abdul, R.K., Qayyum, A., and Supadi, S.S. (2024), A new study on generalized reverse derivations of semi-prime ring, European Journal of Mathematical Analysis, DOI: 10.28924/ada/ma.4.1.
  26. [26]  Abbas, M.N., Mukhtar, A., Khan, A.R., Qayyum, A., and Supadi, S.S. (2024), A new study on generalized reverse derivations of semi-prime ring, European Journal of Mathematical Analysis, DOI: 10.28924/ada/ma.4.1.
  27. [27]  Mukhtar, A., Qayyum, A., Atta, G., Supadi, S.S., Saleem, M., and Ali, U. (2024), A new study on degree-based topological indices of Harary subdivision graphs with application, International Journal of Analysis, 22:0. DOI: 10.28924/2291-8639-22-2024-0.
  28. [28]  Mukhtar, A., Hussain, S., Zahid, I., Parveen, U., Sultan, M., and Qayyum, A. (2023), On degree-based topological indices of Petersen subdivision graph, European Journal of Mathematical Analysis, 3, 20. DOI: 10.28924/ada/ma.3.20.