Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Fredholm Property of Fourier Integral Operators

Discontinuity, Nonlinearity, and Complexity 14(4) (2025) 623--633 | DOI:10.5890/DNC.2025.12.001

Omar Farouk Aid, Abderrahmane Senoussaoui, Mahmoud Slimani

Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Ben Bella. B.P. 1524 El M'naouar, Oran, Algeria

Download Full Text PDF

 

Abstract

In this work, we present the necessary notations and background information that will be used throughout our paper. We begin by introducing some foundational concepts regarding Fredholm operators, providing the essential context for our subsequent analysis. Next, we delve into fundamental principles from the theory of a specific class of Fourier integral operators, focusing on symbols and phase functions. These elements form the cornerstone of our primary objective. Furthermore, we prove significant results concerning the composition of Fourier integral operators with their $L^{2}$-adjoints. These findings are crucial as they enable us to derive important conclusions about the Fredholm properties of these operators.

Acknowledgments

\bibitem{CES1} Agarwal, P., Ahsand, S., Akbare, M., Nawaz, R., and Cesarano, C. (2022), A reliable algorithm for solution of higher dimensional nonlinear $(1 + 1)$ and $(2 + 1)$ dimensional Volterra-Fredholm integral equations, \textit{Dolomites Research Notes on Approximation}, \textbf{14}, 18-25.

References

  1. [1]  Agarwal, P., Ahsand, S., Akbare, M., Nawaz, R., and Cesarano, C. (2022), A reliable algorithm for solution of higher dimensional nonlinear $(1 + 1)$ and $(2 + 1)$ dimensional Volterra-Fredholm integral equations, Dolomites Research Notes on Approximation, 14, 18-25.
  2. [2]  Alsalami, O.M., Kumar, S., Tariq, M., Shaikh, A.A., Cesarano, C., and Nonlaopon, K. (2022), Some new fractional integral inequalities pertaining to generalized fractional integral operator, Symmetry, 14, 1-14.
  3. [3]  Asada, K. and Fujiwara, D. (1978), On some oscillatory transformations in $L^{2}( \mathbb{R}^{n})$, Japanese Journal of Mathematics, 4(2), 299-361.
  4. [4]  Duistermaat, J.J. (1973), Fourier integral operators, Courant Institute Lecture Notes: New-York.
  5. [5]  Egorov, Yu.V. (1993), Microlocal analysis. In Partial Differential Equations IV, Springer-Verlag Berlin Heidelberg, 1-147.
  6. [6]  Hasanov, M. (1998), A class of unbounded Fourier integral operators, Journal of Mathematical Analysis and Applications, 225, 641-651.
  7. [7]  Harrat, C. and Senoussaoui, A. (2014), On a class of $h$-Fourier integral operators, Demonstratio Mathematica, XLVII(3), 596-607.
  8. [8]  H\"{o}rmander, L. (1971), Fourier integral operators I, Acta Mathematica, 127, 79-183.
  9. [9]  Eskin, G.I. (1970), Degenerate elliptic pseudodifferential equations of principal type, Mat. Sb. (N.S.), 82, 585-628.
  10. [10]  Beals, R. (1974), Spatially inhomogeneous pseudodifferential operators II, Communications on Pure and Applied Mathematics, 27, 161-205.
  11. [11]  Greenleaf, A. and Uhlmann, G. (1990), Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Journal of Functional Analysis, 89, 202-232.
  12. [12]  Ahmad, H., Tariq, M., Sahoo, S.K., Baili, J., and Cesarano, C. (2021), New estimations of hermite-hadamard type integral inequalities for special functions, Fractal and Fractional, 5, 1-26.
  13. [13]  Aid, O.F. and Senoussaoui, A. (2021), The boundedness of a class of semiclassical Fourier integral operators on Sobolev space $H^s$, Matematychni Studii, 56(1), 61-66.
  14. [14]  Aid, O.F. and Senoussaoui, A. (2023), $L^2$-Hilbert-Schmidtness of Fourier integral Operators with weighted symbols, Memoirs on Differential Equations and Mathematical Physics, 88, 1-11.
  15. [15]  Gala, S., Liu, Q., and Ragusa, M.A. (2012), A new regularity criterion for the nematic liquid crystal flows, Applicable Analysis, 91(9), 1741-1747.
  16. [16]  Guariglia, E. and Guido, R.C. (2022), Chebyshev wavelet analysis, Journal of Function Spaces, 1, 5542054.
  17. [17]  Guariglia, E. and Silvestrov, S. (2017), Fractional-wavelet analysis of positive definite distributions and wavelets on $D'(C)$, In: Engineering Mathematics II, Springer, 179, 337-353.
  18. [18]  Ragusa, M.A. (1998), Dirichlet problem in Morrey spaces for elliptic equations in non divergence form with VMO coefficients, Proceedings of the Eighth International Colloquium on Differential Equations, 385-390.
  19. [19]  Ragusa, M.A. (1999), Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis, Commentationes Mathematicae Universitatis Carolinae, 40(4), 651-663.
  20. [20]  Ragusa, M.A. (2012), On some trends on regularity results in Morrey spaces, AIP Conference Proceedings, 1493, 770-777.
  21. [21]  Abel, H. and Pfeuffer, C. (2020), Fredholm property of non-smooth pseudodifferential operators, Mathematische Nachrichten, 1, 1-25.
  22. [22]  Edmunds, D.E. and Evans, W.D. (1987), Spectral Theory and Differential Operators, Oxford University Press.
  23. [23]  Alvarez, T., Fakhfakh, F., and Mnif, M. (2017), Left-Right Fredholm and Left-Right Browder Linear Relations, Filomat, 31(2), 255-271.
  24. [24]  Carpintero, C.R. (2018), A note on preservation of generalized Fredholm spectra in Berkani's sense, Filomat, 32(18), 6431-6440.
  25. [25]  Tajmouati, A., Amouch, M., and Karmouni, M. (2017), Symmetric difference between pseudo B-fredholm spectrum and spectra originated from fredholm theory, Filomat, 31(16), 5057-5064.
  26. [26]  Aid, O.F. and Senoussaoui, A. (2019), The boundedness of $h$-admissible Fourier integral operators on Bessel potential spaces, Turkish Journal of Mathematics, 43(5), 2125-2141.
  27. [27]  Aid, O.F. and Senoussaoui, A. (2023), The Hilbert-Schmidt property for semiclassical Fourier integral operators with operator symbol, Asian-European Journal of Mathematics, 16(10), 2350175.
  28. [28]  Aid, O.F. and Senoussaoui, A. (2021), $H^s$-Boundeness of a class of a Fourier integral operators, Mathematica Slovaca, 71(4), 889-902.