Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Initial Value Problems for Hybrid Generalized Hilfer Fractional Differential Equations

Discontinuity, Nonlinearity, and Complexity 12(2) (2023) 287--298 | DOI:10.5890/DNC.2023.06.005

$^{1}$ Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abb`es, P.O. Box 89, Sidi Bel-Abb`es 22000, Algeria

$^{2}$ Department of Electronics, University of Sa"{i}da--Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Sa"{i}da, Algeria

$^{3}$ Faculty of Mathematics and Computational Science, Xiangtan University, Hunan 411105, P.R. China

Download Full Text PDF



This manuscript is devoted to proving some results concerning the existence of solutions for a class of initial value problems for nonlinear fractional Hybrid differential equations and Generalized Hilfer fractional derivative. The result is based on a fixed point theorem due to Dhage. Further, some examples are provided for the justification of our main results.


  1. [1]  Abbas, S., Benchohra, M., Lazreg, J.E., Alsaedi, A., and Zhou, Y. (2017), Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Advances in Difference Equations, 2017(1), 1-14.
  2. [2]  Abbas, S., Benchohra, M., Lazreg, J.E., and N'Gu{e}r{e}kata, G.M. (2017), Hilfer and Hadamard functional random fractional differential inclusions, Cubo, 19, 17-38.
  3. [3]  Abbas, S., Benchohra, M., Lazreg, J.E., and Zhou, Y. (2017), A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Solitons Fractals, 102, 47-71.
  4. [4]  Benchohra, M. and Lazreg, J.E. (2017), Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Studia Universitatis BabeÈ™-Bolyai Mathematica, 62, 27-38.
  5. [5]  Zhou, Y. (2014), Basic Theory of Fractional Differential Equations, World Scientific, Singapore.
  6. [6]  Abbas, S., Benchohra, M., Graef, J.R., and Henderson, J. (2018), Implicit Differential and Integral Equations: Existence and stability, Walter de Gruyter, London.
  7. [7]  Abbas, S., Benchohra, M. and N'Gu{e}r{e}kata, G.M. (2012), Topics in Fractional Differential Equations, Springer-Verlag, New York.
  8. [8]  Abbas, S., Benchohra, M., and N'Gu{e}r{e}kata, G.M. (2014), Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York.
  9. [9]  Ahmad, B., Alsaedi, A., Ntouyas, S.K., and Tariboon, J. (2017), Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham.
  10. [10]  Ahmad, B., Alsaedi, A., and Ntouyas, S.K. (2012), Fractional differential inclusions with fractional separated boundary conditions, Fractional Calculus and Applied Analysis, 15, 362-382.
  11. [11]  Baleanu, D., G\"{u}ven\c{c}, Z.B, and Machado, J.A.T. (2010), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York.
  12. [12]  Baleanu, D., Jajarmi, A., Bonyah, E., and Hajipour, M. (2018), New aspects of poor nutrition in the life cycle within the fractional calculus. Advances in Difference Equations, (1), 1-14.
  13. [13]  Baleanu, D., Jajarmi, A., and Asad, J.H. (2019), Classical and fractional aspects of two coupled pendulums, Romanian Reports in Physics, 71(103), 1-12.
  14. [14]  Baleanu, D., Sajjadi, S.S., Asad, J.H., Jajarmi, A.. and Estiri, E. (2021), Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system. Advances in Difference Equations, (1), 1-24.
  15. [15]  Baleanu, D., Sajjadi, S.S., Jajarmi, A.M.I.N., Defterli, O.Z.L.E.M., Asad, J.H., and Tulkarm, P. (2021), The fractional dynamics of a linear triatomic molecule, Romanian Reports in Physics Journal, 73(1), 105, 1-13.
  16. [16]  Jajarmi, A. and Baleanu, D. (2021), On the fractional optimal control problems with a general derivative operator, Asian Journal of Control, 23(2), 1062-1071.
  17. [17]  Mustapha, U.T., Qureshi, S., Yusuf, A., and Hincal, E. (2020), Fractional modeling for the spread of Hookworm infection under Caputo operator, Chaos, Solitons, Fractals, 137, 109878, 1-15.
  18. [18]  Qureshi, S., E. Bonyah, E., and Shaikh, A.A. (2019), Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data, Physica A: Statistical Mechanics and its Applications, 535, 122496, 1-14.
  19. [19]  Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M., and Baleanu, D. (2019), Fractional modeling of blood ethanol concentration system with real data application, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(1), 013143, 1-15.
  20. [20]  Salim, A., Benchohra, M., Karapinar, E., and Lazreg, J.E. (2020), Existence and Ulam stability for impulsive generalised Hilfer-type fractional differential equations, Advances in Difference Equations, (620), 1--21.
  21. [21]  Salim, A., Benchohra, M., Lazreg, J.E., and Henderson, J. (2020), Nonlinear implicit generalised Hilfer-type fractional differential equations with non-instantaneous impulses in Banach spaces, Nonlinear Analysis, Theory, Methods and Applications 4(4), 332-348.
  22. [22]  Salim, A., Benchohra, M., Graef, J.R., and Lazreg, J.E. (2021), Boundary value problem for fractional generalised Hilfer-type fractional derivative with non-instantaneous impulses, Fractal and Fractional, 5(1), 1-21.
  23. [23]  Delouei, A.A., Kayhani, M.H., and Norouzi, M. (2012), Exact analytical solution of unsteady axi-symmetric conductive heat transfer in cylindrical orthotropic composite laminates International Journal of Heat and Mass Transfer, 55(15-16), 4427-4436.
  24. [24]  Delouei, A.A. and Norouzi, M. (2015), Exact Analytical Solution for Unsteady Heat Conduction in Fiber-Reinforced Spherical Composites Under the General Boundary Conditions, Journal Heat Transfer 137(10), 10170.
  25. [25]  Kayhani, M.H., Norouzi, M., and Delouei, A.A. (2012), A general analytical solution for heat conduction in cylindrical multilayer composite laminates, International Journal of Thermal Sciences, 52, 73-82
  26. [26]  Norouzi, M., Delouei, A.A., and Seilsepour, M. (2013), A general exact solution for heat conduction in multilayer spherical composite laminates, Composite Structures, 106, 288-295
  27. [27]  Ahmad, B., Alsaedi, A., and Ntouyas, S.K. (2014), Initial value problems for hybrid Hadamard fractional differential equations, Electronic Journal of Differential Equations, 161, 1-8.
  28. [28]  Baitiche, Z., Guerbati, K., Benchohra, M., and Zhou, Y. (2019), Boundary value problems for hybrid Caputo fractional differential equations, Mathematics, 7, 282, 1-11.
  29. [29]  Derbazi, C., Hammouche, H. and Benchohra, M. (2019), Fractional hybrid differential equations with three-point boundary hybrid conditions, Advances in Difference Equations, 2019, 125, 1-11.
  30. [30]  Zhao, Y., Sun, S., Han, Z., and Li, Q. (2011), Theory of fractional hybrid differential equations, Computational and Applied Mathematics, 62, 1312-1324.
  31. [31]  Hilal, K. and Kajouni, A. (2015), Boundary value problems for hybrid differential equations with fractional order, Advances in Difference Equations, 2015(1), 1-19.
  32. [32]  Dhage, B.C. (2005), On a fixed point theorem in Banach algebras with applications, Applied Mathematics Letters, 18, 273-280.
  33. [33]  Katugampola, U. (2011), A new approach to a generalized fractional integral, Applied Mathematics and Computation, 218, 860-865.
  34. [34]  Oliveira, D.S. and De Oliveira, E.C. (2018), Hilfer–Katugampola fractional derivatives, Computational and Applied Mathematics, 37(3), pp.3672-3690.
  35. [35]  Almeida, R., Malinowska, A.B., and Odzijewicz, T. (2016), Fractional differential equations with dependence on the Caputo--Katugampola derivative, The Journal of Computational and Nonlinear Dynamics, 11(6), 1-11.