Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Advancements on $psi $-Hilfer Fractional Calculus and Fractional Integral Inequalities

Discontinuity, Nonlinearity, and Complexity 12(2) (2023) 245--264 | DOI:10.5890/DNC.2023.06.002

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Download Full Text PDF



After motivation we give a complete background on needed $\psi $-Hilfer fractional Calculus. Then we produce $\psi $-Hilfer fractional left and right Taylor formulae. We give also important $\psi $-Hilfer fractional left and right representation integral formulae regarding $\psi $-Hilfer left and right fractional derivatives. Then we give extensive applications of our $% \psi $-Hilfer fractional results to left and right $\psi $-Hilfer fractional Ostrowski, Opial and Poincar\'{e} type integral inequalities. We create the space for more future forthcoming results.


  1. [1]  Ostrowski, A. (1938), \"{U}ber die absolutabweichung einer differtentiebaren Funktion von ihrem integralmittelwert, Commentarii Mathematici Helvetici, 10, 226-227.
  2. [2]  Anastassiou, G.A. (1995), Ostrowski type inequalities, Proceedings of the American Mathematical Society, 123, 3775-3781.
  3. [3]  Vanterler da C. Sousa, J., and Capelas de Oliveira, E. (2018), On the $\psi $-Hilfer fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 60, 72-91.
  4. [4]  Samko, S.G., Kilbas, A.A., and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland.
  5. [5]  Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differentiation Equations, North Holland, Amsterdam, New York.
  6. [6]  Almeida, R. (2017), A Caputo fractional derivative of a function with respect to another function, Communications in Nonlinear Science and Numerical Simulation, 44, 460-481.
  7. [7]  Tomovski, \v{Z}., Hilfer, R., and Srivastava, H.M. (2010), Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms and Special Functions, 21(11), 797-814.
  8. [8]  Anastassiou, G.A. (2009), Fractional Differentiation Inequalities, Springer, Heidelberg, New York.
  9. [9]  Anastassiou, G.A. (2018), Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg, New York.
  10. [10]  Anastassiou, G.A. (2011), Advances on Fractional Inequalities, Springer, New York.
  11. [11]  Anastassiou, G.A. (2011), Intelligent Mathematics: Computational Analysis, Springer, Heidelberg, New York.
  12. [12]  Opial, Z. (1960), Sur une in{e}galit{e}, Annales Polonici Mathematici, 8, 29-32.