Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Continuability of Lienard's Type System with Generalized Local Derivative

Discontinuity, Nonlinearity, and Complexity 12(1) (2023) 1--11 | DOI:10.5890/DNC.2023.03.001

George E. Chatzarakis, Juan E. N\'{a}poles Vald\'{e}s

Download Full Text PDF

 

Abstract

In this paper, we study the boundedness and continuability of the solutions of a generalized Li\'{e}nard type system, using fractional derivatives of the local type. We obtain sufficient conditions for the solutions to be bounded and continuous by a suitably defined Lyapunov function. We illustrate the results and suggest extensions to asymptotic stability, through various examples adapted from the relevant literature.

Acknowledgments

The authors thank the Reviewer for his/her constructive suggestions and useful corrections that improved the content of the paper.

References

  1. [1]  Lyapunov, A. M. (1966), Stability of Motion, Academic Press, New-York \& London.
  2. [2]  Li{e}nard, A. (1928), {E}tude des oscillations entretenues, Revue G{enerale de l'{E}lectricit{e}}, 23, 901-912, 946-954.
  3. [3]  Atangana, A. (2016), Derivative with a New Parameter Theory, Methods and Applications, Academic Press.
  4. [4]  Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M. (2014), A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70.
  5. [5]  Abdeljawad, T. (2015), On conformable fractional calculus, Journal of computational and Applied Mathematics, 279, 57-66
  6. [6]  Guzm{a}n, P.M., Langton, G., Lugo, L.M., Medina, J., and N{a}poles Vald{e}s, J.E. (2018), A new definition of a fractional derivative of local type, Journal of Mathematical Analysis, 9(2), 88-98.
  7. [7]  N{a}poles Vald{e}s, J.E., Guzm{a}n, P.M., Lugo, L.M., and Kashuri, A. (2020), The local non conformable derivative and Mittag Leffler function, Sigma Journal of Engineering and Natural Sciences, 38(2), 1007-1017.
  8. [8]  Zhao, D. and Luo, M. (2017), General conformable fractional derivative and its physical interpretation, Calcolo, 54, 903-917.
  9. [9]  Gorenflo, R. and Mainardi, F. (1997), Fractional Calculus: Integral and Differential Equations of Fractional Order, pp. 223-276. Springer, Wien.
  10. [10]  Machado, J.T., Kiryakova, V., and Mainardi, F. (2010), Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation, 16(3), 1140-1153.
  11. [11]  Fleitas, A., M{e}ndez, J.A., N{a}poles, J.E., and Sigarreta, J.M. (2019), On the some classical systems of Li{e}nard in general context, Revista Mexicana de F{\isica}, 65(6), 618-625.
  12. [12]  Guzm{a}n, P.M., Lugo, L.M., and N{a}poles Vald{e}s, J.E. (2019), A note on stability of certain Lienard fractional equation, International Journal of Mathematics and Computer Science, 14(2), 301-315.
  13. [13]  Mart{\i}nez, F., Mohammed, P.O., and N{a}poles Vald{e}s, J.E. (2022), Non conformable fractional Laplace transform, Kragujevac Journal of Mathematics, 46(3), 341-354.
  14. [14]  Mart{\i}nez, F. and N{a}poles Vald{e}s, J.E. (2020), Towards a non-confortable fractional calculus of n-variables, Journal of Mathematics and Applications, 43, 87-98.
  15. [15]  N{a}poles Vald{e}s, J.E., Guzm{a}n, P.M., and Lugo, L.M. (2018), Some new results on nonconformable fractional calculus, Advances in Dynamical Systems and Applications, 13(2), 167-175.
  16. [16]  Baleanu, D. and Fernandez, A. (2019), On fractional operators and their classifications, Mathematics, 7(9), 830, 10pp.
  17. [17]  Baleanu, D. (2020), Comments on: Ortigueira, M., Martynyuk, V., Fedula, M., Machado, J.A.T., The failure of certain fractional calculus operators in two physical models, in Fractional Calculus and Applied Analysis, 22(2), 255-277; Fractional Calculus and Applied Analysis, 23(1), DOI:https://doi.org/10.1515/fca-2020-0012.
  18. [18] Guzm{a}n, P.M., Lugo, L.M., N{a}poles Vald{e}s, J.E., and Vivas, M. (2020), On a new generalized integral operator and certain operating properties, Axioms, 9(2), 1-14.
  19. [19]  Al-Refai, M. and Abdeljawad, T. (2017), Fundamental results of conformable Sturm--Liouville eigenvalue problems, Complexity, 2017, https://doi.org/10.1155/2017/3720471.
  20. [20]  Acay, B., Bas, E., and Abdeljawad, T. (2020), Non-local fractional calculus from different viewpoint generated by truncated M-derivative, Journal of Computational and Applied Mathematics , 366, 112410 (2020).
  21. [21]  Fleitas, A., N{a}poles, J.E., Rodriguez, J.M., and Sigarreta, J.M. (2021), Note on the generalized conformable derivative, Revista de la UMA, to appear.
  22. [22]  N{a}poles Valdes, J.E. (1995), A continuation result for a bidimensional system of differential equation, Revista integraci{on}, 13(2), 49-54.
  23. [23]  Pilipenko, A.M. and Biryukov, V.N. (2013), Investigation of modern numerical analysis methods of self-oscillatory circuits efficiency, Journal of Radio Electronics, 8, UDC 621.372, 532.59.
  24. [24]  Hara, T., Yoneyama, T., and Sugie, J. (1985), Necessary and sufficient conditions for the continuability of solutions of the system $x' = y - F(x)$. $y'=-g(x)$, Applicable Analysis, 19, 169-180.
  25. [25]  Hasan, Y.Q. and Zhu, L.M. (2007), The bounded solutions of Lienard system, Journal of Applied Sciences, 7(8), 1239-1240.
  26. [26]  Hricis{a}kova, D. (1990), Continuability and (non-) oscillatory properties of solutions of generalized Lienard Equation, Hiroshima Mathematical Journal, 20, 11-22.
  27. [27]  Lugo, L.M., N{a}poles Vald{e}s, J.E., and Noya, S.I. (2014), On the construction of regions of stability, Pure and Applied Mathematics Journal, 3(4), 87-91.
  28. [28]  N{a}poles Vald{e}s, J.E. (2000), On the boundedness and asymptotic stability in the whole of Lienard equation with restoring term, Revista de la Uni{on Matem{a}tica Argentina}, 41(4), 47-59 (Spanish).
  29. [29]  Peng, L. and Huang, L. (1994), On global asymptotic stability of the zero solution of a generalized Lienard's system, Applied Mathematics-A Journal of Chinese Universities, 9(4), 359-363.
  30. [30]  N{a}poles Valdes, J.E. and Repilado, R. (1997), On the boundedness and stability in global sense of the solutions of a two-dimensional system of differential equations, Revista Ciencias Matemáticas, XVI, 71-74.
  31. [31]  N{a}poles Valdes, J.E. (1999), On the global stability of non-autonomous systems, Revista Colombiana de Matemáticas, 33, 1-8.
  32. [32]  Odani, K. (1995), The limit cycle of the Vanderpol equation is not algebraic, Journal of Differential Equations, 115, 146-152.
  33. [33]  Hricisakova, D. (1990), Continuability and (non-) oscillatory properties of solutions of generalized Lienard equation, Hiroshima Mathematical Journal, 20, 11-22.
  34. [34]  Hricisakova, D. (1992), Negative solutions of the generalized Lienard equation, Hiroshima Mathematical Journal, 23, 155-160.
  35. [35]  Yu, S.X. and Zhang, J.Z. (1993), On the center of the Li{e}nard equation, Journal of Differential Equations, 102, 53-61.