Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Positive Solution for a Class of Infinite Semipositone (p,q)-Laplace System

Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 757--765 | DOI:10.5890/DNC.2022.12.013

Sounia Zeditri, Kamel Akrout, Rafik Guefaifia

Laboratory of Mathematics, Informatics and Systems, Larbi Tebessi, University, Tebessa, 12000, Algeria

Download Full Text PDF



In this paper we consider following (p,q)-Laplacian system \begin{equation*} \left\{ \begin{split} & -\Delta _{p}u=\lambda l\left( x\right) u^{p-1}-f_{1}\left( u,v\right) -au^{-\alpha _{1}}v^{\beta _{2}}\ \text{in }\Omega , \\ & -\Delta _{q}v=\mu k\left( x\right) v^{q-1}-f_{2}\left( u,v\right) -bu^{\alpha _{2}}v^{-\beta _{2}}\text{ in }\Omega , \\ & u=v=0\text{ on }\partial \Omega ,% \end{split} \right. \end{equation*} where $\Omega $ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega $, $\lambda $ and $\mu $ are a positive parameters and $a,$ $b$ are a positive constant. By using the method of sub-supersolution we discuss the existence of positive solution.


The authors acknowledge to Prof. Salah Mahmoud Boulaaras from Qassim University at Saudi Arabia for a first revision and kind comments on this work. The authors would like to thank the anonymous referees and the handling editor for their careful reading and for relevant remarks/suggestions.


  1. [1]  Boulaaras, S. and Guefaifi, R. (2018), Existence of positive solutions for a class of -Laplacian systems (p(x), q (x)), Rendiconti del Circolo Matematico di Palermo, 2(67), 93-103.
  2. [2]  Boulaaras, S.G. and Bouali, T. (2018), Existence de solutions positives pour une classe de syst\`{e}mes elliptiques singuliers quasi-lin{e}aires impliquant un exposant de Caffarelli-Kohn-Nirenberg avec des fonctions de poids de changement de signe, Indian Journal of Pure and Applied Mathematics, 2018.
  3. [3]  Brezis, H. (1987), Analyse fonctionnelle, th{e}orie et applications, Masson. Parie.
  4. [4]  Demengel, F. and Demengel, G. (2007), Espaces fonctionnels. utilisation dans des E.D.P, Sciences France.
  5. [5]  Guefaifia, R. and Boulaaras (2020), Sub-super solutions method for elliptical systems hold Laplacian p 1, ..., pm, Mathematical Methods in Applied Sciences, 43(7), 4191-4199.
  6. [6]  Guefaifia, R., Akrout, K., and Saifia, W. (2013), Existence and nonexistence of weak positive solution for classes of 3 p-Laplacian elliptic systems, International Journal of Partial Differential Equations and Applications, 1(1), 13-17.
  7. [7]  Guefaifia, R., Boulaaras, S.M., Alodhaibi, S., and Alkhalaf, S. (2020), Existence of weak positive solutions for a new class of Laplacian nonlinear elliptical system with sign change weights, Complexity, 2020.
  8. [8]  Guefaifia, R., Boulaaras, S., and Bouizem, Y. (2020), Existence of positive solutions for a class of Kirrchoff systems with the right side defined as a multiplication of two distinct functions, Applied Mathematics E-Notes, 19, 331-342.
  9. [9]  Guefaifia, R., Zuo, J., Boulaaras, S., and Agarwal, P. (2020), Existence and multiplicity of positive weak solutions for a new class of (p; q) -laplacian systems preprint arXiv arXiv: 2006.05776.
  10. [10]  Haghaieghi, S. and Afrouzi, G.A. (2011), Sub-super solutions for (p-q) laplacian systems, Boundary Value Problems, 52.
  11. [11]  Hai, D.D. and Shivaji, R. (2004), An existence result on positive solutions for a class of p-laplacian systems, Nonlinear Analysis, 56, 1007-1010.
  12. [12]  Lee, E.K., Shivaji, R., and Ye. J, (2010), Positive solutions for infinite semipositone problems with falling zeros, Nonlinear Analysis, 72, 4475-4479.
  13. [13]  Rasouli, S.H. (2013), On the existence of positive solutions for a class of infinite semipositone systems with singular weights, Thai J. Math., 11(1), 103-110.
  14. [14]  Shivaji, R. and Ye, J. (2011), Nonexistence results for classes of elliptic systems, Nonlinear Analysis, 74, 1485-1494. 189-204.
  15. [15]  Zediri, S., Guefaifia, R., and Boulaaras, S. (2020), Existence of positive solutions of a new classof nonlocal p(x)-Kirchhoff parabolic systemsvia sub-super-solutions concept, J. Appl. Anal., 26(1), 49-58.
  16. [16]  Guefaifia, R., Boulaaras, S., Cherif, B., and Radwan, T. (2020), Infinite existence solutions of fractional systems with lipschitz nonlinearity, Journal of Function Spaces, vol. 2020, Article ID 6679101, 11 pages, 2020. 10.1155/2020/6679101
  17. [17]  Boulaaras, S., Guefaifia, R., Cherif, B., and Radwan, T. (2020), Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods, AIMS Mathematics, 6(3), 2315-2329. doi: 10.3934/math.2021140
  18. [18]  Guefaifia, R., Boulaaras, J., and Zuo, P.A. (2020), Existence and multiplicity of positive weak solutions for a new class of (P; Q)-Laplacian systems, Miskolc Mathematical Notes, 21(2), 861-872.
  19. [19]  Haiour, M., Boulaaras, S., Guefaifia, R., and Kamache, F. (2020), Existence result for a new class of Kirchhoff elliptic system with variable parameters, Miskolc Mathematical Notes, 21(2), 887-896.
  20. [20]  Afrouzi, G.A., Shakeri, S., and Chung, N.T. (2013), Remark on an infinite semipositone problem with indefinite weight and falling zeros, Proc. Indian Acad. Sci. (Math. Sci.), 123(1), 145-150.
  21. [21]  Akrout, K. (2015), Existence of positive solution for a class of infinite semipositone p-Laplace systems with falling zeros, International Journal of Mathematics and Computation, 26(4), 74-80.
  22. [22]  Afrouzi, G.A. Chung, N.T., and Shakeri, S. (2013), Existence of positive solutions for kirchhoff type equations, Electronic Journal of Differential Equations, 2013(180), 1-8.