Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


first{Dynamic Behaviour of the Platform-vibrator with Soft Impact. Part 2. Interior Crisis. Crisis-Induced Intermittency}

Discontinuity, Nonlinearity, and Complexity 11(1) (2022) 107--124 | DOI:10.5890/DNC.2022.03.009

normalsize Kyiv National University of Construction and Architecture, 31, Povitroflotskiy avenu, Kyiv, Ukraine

Download Full Text PDF




  1. [1]  Borschevsky, A.A. and Ilyin A.S. (2009), The Mechanical equipment for manufacture of building materials and products. The textbook for high schools on ``Pr-in builds. And designs''. M: The Publishing house the Alliance. (in Russian).
  2. [2]  Gusev, B.V. and Zazimko, V.G. (1991), Vibration technology of concrete, Budivelnik, Kiev. (in Russian).
  3. [3]  Gusev, B.V., Deminov, A.D., and Kryukov, B.I. (1982), Impact-Vibrational Technology of Compaction of Concrete Mixtures. Stroiizdat, Moscow. (in Russian).
  4. [4]  Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G, and Otrashevska, V.V. (2020), Dynamic Behaviour of the Platform-vibrator with Soft Impact. Part 1. Dependence on Exciting Frequency, Discontinuity, Nonlinearity, and Complexity. (In press).
  5. [5]  Macau, E.E. (Ed.). (2019), A mathematical modeling approach from nonlinear dynamics to complex systems. Springer International Publishing.
  6. [6]  Lai, Y.C. and T{e}l, T. (2011), Transient chaos: complex dynamics on finite time scales~(Vol. 173). Springer Science & Business Media.
  7. [7]  Mishra, A., Leo Kingston, S., Hens, C., Kapitaniak, T., Feudel, U., and Dana, S.K. (2020), Routes to extreme events in dynamical systems: Dynamical and statistical characteristics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(6), 063114.
  8. [8]  Elaskar, S. (2018), Studies on Chaotic Intermittency (Doctoral dissertation, Doctoral Thesis, Universidad Polit{e}cnica de Madrid. Madrid).
  9. [9]  Wang, G., Lai, Y.C., and Grebogi, C. (2016), Transient chaos-a resolution of breakdown of quantum-classical correspondence in optomechanics, Scientific reports, 6, 35381.
  10. [10]  Elaskar, S. and Del R{\i}o, E. (2017), New advances on chaotic intermittency and its applications~(pp. 35-38). New York: Springer.
  11. [11]  Astaf'ev, G.B., Koronovskii, A.A., and Khramov, A.E. (2003), Behavior of dynamical systems in the regime of transient chaos, Technical Physics Letters, 29(11), 923-926.
  12. [12]  Hilborn, R.C. (2000), Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand.
  13. [13]  Grebogi, C., Ott, E., and Yorke, J.A. (1982), Chaotic attractors in crisis, Physical Review Letters, 48(22), 1507.
  14. [14]  Grebogi, C., Ott, E., and Yorke, J.A. (1983), Crises, sudden changes in chaotic attractors, and transient chaos, Physica D: Nonlinear Phenomena, 7(1-3), 181-200.
  15. [15]  Grebogi, C., Ott, E., Romeiras, F., and Yorke, J.A. (1987), Critical exponents for crisis-induced intermittency, Physical Review A, 36(11), 5365.
  16. [16]  Grebogi, C., Ott, E., and Yorke, J.A. (1986), Critical exponent of chaotic transients in nonlinear dynamical systems, Physical Review Letters, 57(11), 1284.
  17. [17]  Ott, E. (2002), Chaos in dynamical systems. Cambridge university press.
  18. [18]  Bazhenov, V.A., Pogorelova, O.S., and Postnikova, T.G. (2017), Stability and Discontinious Bifurcations in Vibroimpact System: Numerical investigations. LAP LAMBERT Academic Publ. GmbH and Co. KG Dudweiler, Germany.
  19. [19]  Bazhenov, V.A., Pogorelova, O.S., and Postnikova, T.G. (2019), Intermittent and quasi-periodic routes to chaos in Vibroimpact System: Numerical simulations, LAP LAMBERT Academic Publ, GmbH and Co. KG Dudweiler, Germany.
  20. [20]  Bazhenov, V.A., Pogorelova, O.S., and Postnikova, T.G. (2020), Quasiperiodic Route to Transient Chaos in Vibroimpact System. Chapter 3 in Book: ``Nonlinear Dynamics, Chaos, and Complexity: In Memory of Professor Valentin Afraimovich (1945-2018)'', Vol. 1, Volchenkov D., (Ed.) Springer.
  21. [21]  Bazhenov, V.A., Pogorelova, O.S., and Postnikova, T.G. (2020), Analysis of Intermittent and Quasi-periodic Transitions to Chaos in Vibro-impact System with Continuous Wavelet Transform. Chapter into Book: ``Discontinuity, Ninlinearity and Complexity. In memory of Valentin Afraimovich (1945-2018)'', Vol 3, Volchenkov D., (Ed.) Spinger. (DNC Vol 11 (issue) in press).
  22. [22]  Danca, M.F. (2016), Hidden transient chaotic attractors of Rabinovich--Fabrikant system, Nonlinear Dynamics, 86(2), 1263-1270.
  23. [23]  Goldsmith, W. (1960), Impact, the theory and physical behaviour of colliding solids. Edward Arnold Ltd.
  24. [24]  Johnson, K.L. (1985), Contact Mechanics. Cambridge: Cambridge University Press.
  25. [25]  Kapitaniak, T. and Bishop, S.R. (1999), The illustrated dictionary of nonlinear dynamics and chaos. Wiley.
  26. [26]  Moon, F.C. (1987), Chaotic vibrations: an introduction for applied scientists and engineers. --- New York : Wiley -- C. 219.
  27. [27]  Schuster, H.G. and Just, W. (2006), Deterministic chaos: an introduction. John Wiley & Sons.
  28. [28]  Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., and Magin, R. (2012), Transient chaos in fractional Bloch equations, Computers $\&$ Mathematics with Applications, 64(10), 3367-3376
  29. [29]  J{a}nosi, I.M. and T{e}l, T. (1994), Time-series analysis of transient chaos, Physical Review E, 49(4), 2756.
  30. [30]  T{e}l, T. (2015), The joy of transient chaos, Chaos: An Interdisciplinary, Journal of Nonlinear Science, 25(9), 097619.