Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Demand Behaviour for Weather Index Insurance Products in Regions Prone to Agricultural Droughts

Discontinuity, Nonlinearity, and Complexity 10(4) (2021) 765--780 | DOI:10.5890/DNC.2021.12.015

Dmitry V. Kovalevsky , Maria Manez Costa

Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany

Download Full Text PDF



Weather index insurance (WII) is a promising insurance scheme relevant for the agricultural sector, particularly in many low-income countries, including regions prone to agricultural droughts. WII policies might be more affordable to farmers, as the payouts in these insurance schemes are based on weather indices objectively determined for the specific agricultural regions, and therefore a costly individual loss assessment is not necessary. To successfully implement and scale up WII schemes, the development of transdisciplinary models properly addressing the complexity of relevant socio-natural processes and their interplay is necessary. We develop a stochastic model to simulate the demand for insurance policies in a drought-prone region under an assumption that weather and climate services, as tailored products for regions vulnerable to droughts, provide forecasts of the weather index on which the insurance scheme is based. Therefore, the simulated demand for the insurance policy might depend on the quality of the available weather index forecast. Presented modelling results suggest that both the income of individual producers and the dynamics of aggregate demand for insurance policies might be sensitive to the quality of the available weather index forecast. The developed modelling approaches can inform the design and implementation of WII schemes in drought-prone regions.


  1. [1]  Hoegh-Guldberg, O., Jacob, D., Taylor, M., Guill{\e}n Bola{\~n}os, T., Bindi, M., Brown, S., Camilloni, I.A., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Hope, C.W., Payne, A.J., P{\"o}rtner, H.-O., Seneviratne, S.I., Thomas, A., Warren, R., and Zhou, G. (2019), The human imperative of stabilizing global climate change at 1.5$^\circ$C, Science, 365, eaaw6974, DOI:10.1126/science.aaw6974.
  2. [2]  IPCC (2014), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge.
  3. [3]  Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S.P., Vautard, R., Donnelly, C., Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., Damm, A., Sakalli, A., and van Vliet, M.T.H. (2018), Climate impacts in Europe under +1.5$^\circ${C} global warming, Earths Future, 6, 264-285, DOI~10.1002/2017EF000710.
  4. [4]  Pfeifer, S., Rechid, D., Reuter, M., Viktor, E., and Jacob, D. (2019), 1.5$^\circ$, 2$^\circ$, and 3$^\circ$ global warming: visualizing European regions affected by multiple changes, Regional Environmental Change, 19, DOI:10.1007/s10113-019-01496-6.
  5. [5]  Teichmann, C., B{\"u}low, K., Otto, J., Pfeifer, S., Rechid, D., Sieck, K., and Jacob, D. (2018), Avoiding extremes: benefits of staying below +1.5 $^\circ${C} compared to +2.0 $^\circ${C} and +3.0 $^\circ${C} global warming, Atmosphere, 9, DOI:10.3390/ atmos9040115.
  6. [6]  Weber, T., Haensler, A., Rechid, D., Pfeifer, S., Eggert, B., and Jacob, D. (2018), Analyzing regional climate change in Africa in a 1.5, 2, and 3$^\circ$C global warming world, Earths Future, 6, 643-655, DOI:10.1002/2017EF000714.
  7. [7]  Weber, M., Barth, V., and Hasselmann, K. (2005), A multi-actor dynamic integrated assessment model (MADIAM) of induced technological change and sustainable economic growth, Ecological Economics, 54, 306-327, DOI: 10.1016/j.ecolecon.2004.12.035.
  8. [8]  Belesova, K., Gornott, C., Milner, J., Si{\e}, A., Sauerborn, R., and Wilkinson, P. (2019), Mortality impact of low annual crop yields in a subsistence farming population of Burkina Faso under the current and a 1.5$^\circ$ warmer climate in 2100, Science of The Total Environment, 691, 538-548, DOI:10.1016/j.scitotenv.2019.07.027.
  9. [9]  Guimar{\~a}es Nobre, G., Davenport, F., Bischiniotis, K., Veldkamp, T., Jongman, B., Funk, C.C., Husak, G., Ward, P.J., and Aerts, J.C.J.H. (2019), Financing agricultural drought risk through ex-ante cash transfers, Science of The Total Environment, 653, 523-535, DOI:10.1016/j.scitotenv.2018.10.406.
  10. [10]  J{\o}rgensen, S.L., Termansen, M., and Pascual, U. (2020), Natural insurance as condition for market insurance: climate change adaptation in agriculture, Ecological Economics, 169, 106489, DOI:10.1016/j.ecolecon.2019.106489.
  11. [11]  M{\"u}ller, B., Quaas, M.F., Frank, K., and Baumg{\"a}rtner, S. (2011), Pitfalls and potential of institutional change: rain-index insurance and the sustainability of rangeland management, Ecological Economics, 70, 2137-2144, DOI: 10.1016/j.ecolecon.2011.06.011.
  12. [12]  The World Bank (2011), Weather Index Insurance for Agriculture: Guidance for Development Practitioners, Agriculture and Rural Development Discussion Paper 50, The World Bank, URL:~ curated/en/590721468155130451/Weather-index-insurance-for-agriculture-guidance-for-development-practitioners.
  13. [13]  United Nations (2019), The Sustainable Development Goals Report 2019, United Nations, URL:~ sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf.
  14. [14]  G{\o}mez Mart{\i}n, E., M{\a}{\~n}ez Costa, M., and Schwerdtner M{\a}{\~n}ez, K. (2020), An operationalized classification of Nature Based Solutions for water-related hazards: From theory to practice, Ecological Economics, 167, 106460, DOI:10.1016/j.ecolecon.2019.106460.
  15. [15]  Mishra, A.K. and Singh, V.P. (2010), A review of drought concepts, Journal of Hydrology, 391, 202-216, DOI:10.1016/j.jhydrol.2010.07.012.
  16. [16]  Smirnov, V., Ma, Z., and Volchenkov, D. (2020), Extreme events and emergency scales, Communications in Nonlinear Science \& Numerical Simulation, 90, 105350, DOI: 10.1016/j.cnsns.2020.105350.
  17. [17]  FAO (2012), The State of Food and Agriculture, FAO: Rome, URL: {}.
  18. [18]  Burke, E.J. and Brown, S.J. (2010), Regional drought over the UK and changes in the future, Journal of Hydrology, 394, 471-485, DOI:10.1016/j.jhydrol.2010.10.003.
  19. [19]  Leblois, A., Quirion, P., and Sultan, B. (2014), Price vs. weather shock hedging for cash crops: ex ante evaluation for cotton producers in Cameroon, Ecological Economics, 101, 67-80, DOI:10.1016/j.ecolecon.2014.02.021.
  20. [20]  Binswanger-Mkhize, H.P. (2012), Is there too much hype about index-based agricultural insurance? The Journal of Development Studies, 48, 187-200, DOI:10.1080/00220388.2011.625411.
  21. [21]  Santeramo, F.G., Goodwin, B.K., Adinolfi, F., and Capitanio, F. (2016), Farmer participation, entry and exit decisions in the Italian crop insurance programme, Journal of Agricultural Economics, 67, 639-657, DOI:10.1111/1477-9552.12155.
  22. [22]  Koldunov, N.V., Kumar, P., Rasmussen, R., Ramanathan, A.L., Nesje, A., Engelhardt, M., Tewari, M., Haensler, A., and Jacob, D. (2016), Identifying climate change information needs for the Himalayan Region: results from the GLACINDIA Stakeholder Workshop and Training Program, Bulletin of the American Meteorological Society, 97, ES37-ES40, DOI:10.1175/BAMS-D-15-00160.1.
  23. [23]  Preuschmann, S., H{\"a}nsler, A., Kotova, L., D{\"u}rk, N., Eibner, W., Waidhofer, C., Haselberger, C., and Jacob, D. (2017), The IMPACT2C web-atlas -- Conception, organization and aim of a web-based climate service product, Climate Services, 7, 115-125, DOI:10.1016/j.cliser.2017.03.005.
  24. [24]  van den Hurk, B.J.J.M., Bouwer, L.M., Buontempo, C., D{\"o}scher, R., Ercin, E., Hananel, C., Hunink, J.E., Kjellstr{\"o}m, E., Klein, B., Manez, M., Pappenberger, F., Pouget, L., Ramos, M.-H., Ward, P.J., Weerts, A.H., and Wijngaard, J.B. (2016), Improving predictions and management of hydrological extremes through climate services:, Climate Services, 1, 6-11, DOI:10.1016/j.cliser.2016.01.001.
  25. [25]  Carriquiry, M.A. and Osgood, D.E., (2012), Index insurance, probabilistic climate forecasts, and production, Journal of Risk and Insurance, 79, 287-300, DOI:10.1111/j.1539-6975.2011.01422.x.
  26. [26]  Clarke, D.J. (2016), A theory of rational demand for index insurance, American Economic Journal: Microeconomics, 8, 283-306, DOI:10.1257/mic.20140103.
  27. [27]  Nadolnyak, D. and Vedenov, D. (2013), Information value of climate forecasts for rainfall index insurance for pasture, rangeland, and forage in the Southeast United States, Journal of Agricultural and Applied Economics, 45, DOI:10.1017/S1074070800004612.
  28. [28]  M{\a}{\~n}ez Costa, M. and Kovalevsky, D.V., Weather and climate services to support a risk sharing mechanism for adaptation of the agricultural sector, A theoretical example for drought-prone areas, In: Climate Adaptation Modelling, Springer (in press).
  29. [29]  Conradt, S., Finger, R., and Sp{\"o}rri, M. (2015), Flexible weather index-based insurance design, Climate Risk Management, 10, 106-117, DOI:10.1016/j.crm.2015.06.003.
  30. [30]  Jensen, N., Stoeffler, Q., Fava, F., Vrieling, A., Atzberger, C., Meroni, M., Mude, A., and Carter, M. (2019), Does the design matter? Comparing satellite-based indices for insuring pastoralists against drought, Ecological Economics, 162, 59-73, DOI:10.1016/j.ecolecon.2019.04.014.
  31. [31]  McMaster, G.S. and Wilhelm, W.W. (1997), Growing degree-days: one equation, two interpretations, Agricultural and Forest Meteorology, 87, 291-300, DOI:10.1016/S0168-1923(97)00027-0.
  32. [32]  Lehner, B., D{\"o}ll, P., Alcamo, J., Henrichs, T., and Kaspar, F. (2006), Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis, Climatic Change, 75, 273-299, DOI:10.1007/s10584-006-6338-4.
  33. [33]  Trenberth, K.E., Dai, A., van der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., and Sheffield, J. (2014), Global warming and changes in drought, Nature Climate Change, 4, 17-22, DOI:10.1038/nclimate2067.
  34. [34]  Leng, G. and Hall, J. (2019), Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future, Science of The Total Environment, 654, 811-821, DOI:10.1016/j.scitotenv.2018.10.434.
  35. [35]  Williams, D.S., M{\a}{\~n}ez Costa, M., Celliers, L., and Sutherland, C. (2018), Informal settlements and flooding: identifying strengths and weaknesses in local governance for water management, Water, 10, 871, DOI:10.3390/w10070871.