Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Some New Results in the $q-$Calculus

Discontinuity, Nonlinearity, and Complexity 10(4) (2021) 755--763 | DOI:10.5890/DNC.2021.12.014

Jorge A. Castillo Medina , Salvador Cruz Garc 'ia, Juan E. N 'apoles Valdes, Thelma Galeana Moyaho

UAGro, Facultad de Matem'aticas, Acapulco, Gro, M'exico, ESAEp-UAEH Hidalgo, M'exico, UNNE, FaCENA, Corrientes, Argentina

Download Full Text PDF



In this paper, we present some results for a fractional derivative of type $q$ uniform defined by the authors in a previous work, and which are generalizations of known classical results of ordinary calculus.


  1. [1]  Kac, V. and Cheung, P. (2002), Quantum Calculus, Springer-Verlag.
  2. [2]  N\{a}poles, V., Castillo Medina, J.A., Guzm\{a}n, P.M., and Lugo, L.M. (2019), A new local fractional derivative of q-uniform type, Discontinuity, Nonlinearity, and Complexity, 8(1), 101-109.
  3. [3]  Mercer, P.R. (2002), On A Mean Value Theorem, The College Mathematics Journal, 33(1), 46-48. JSTOR, DOI:10.2307/1558980.
  4. [4]  Rajkovi\c, P., Stankovi\c, M., and Marinkovi\c, S. (2002), Mean Value Theorems in q-calculus, Matemati\cki Vesnik, 54(219), 171-178.
  5. [5]  Tong, J. (1999), The mean value theorems of Lagrange and Cauchy, Int. J. Math. Educ. Sci. Technol., 30, 456-458.
  6. [6]  Tong, J. (2000), The mean value theorems of Lagrange and Cauchy (II), Int. J. Math. Educ. Sci. Technol., 31(3), 447-449.
  7. [7]  Bosch, P., Gomez-Aguilar, J.F., Rodriguez, J.M., and Sigarreta, J.M. (2020), Analysis of Dengue fever outbreak by generalized fractional derivative, Fractals, 28(8), DOI:10.1142/S0218348X20400381.