Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


New relationship between Energy and Estrada Index

Discontinuity, Nonlinearity, and Complexity 10(4) (2021) 617--623 | DOI:10.5890/DNC.2021.12.003

Yalan Li$^1$, Bo Deng$^{2}$ , Chengfu Ye$^{2}$

$^1$ School of Computer, Qinghai Normal University, Xining 810001, China

$^{2}$ School of Mathematics and Statistics, Qinghai Normal University, Xining 810001, China

Download Full Text PDF



Let $G$ be a graph on $n$ vertices, and let $\lambda_{1}, \cdots,\lambda_{n}$ be its eigenvalues. The energy $E(G)$ of a graph $G$ is defined as the sum of absolute values of the eigenvalues of $G$. The Estrada index of the graph $G$ is defined as $EE(G)=\sum ^{n} _{i=1}e^{\lambda_{i}}$. We get some new bounds for $EE(G)$. Some special inequalities are used to obtain the relationship between $E(G)$ and $EE(G)$.


  1. [1]  {Brouwer, A.E. and Haemers, W.H.} (2012), \newblock { Spectra of Graphs}.
  2. [2]  {Cvetkovic, D., Rowlinson, P., and Simic, S.} \newblock An introduction to the theory of graph spectra, spectral techniques.
  3. [3]  Gutman, I. (2001), \newblock The energy of a graph: Old and new results, \newblock { Algebraic Combinatorics and Applications}.
  4. [4]  Li, X., Shi, Y., and Gutman, I. (2012), \newblock { Other Graph Energies}, \newblock Springer New York.
  5. [5]  Nikiforov, V. (2016), \newblock Beyond graph energy: Norms of graphs and matrices, \newblock { Linear Algebra $\&$ Its Applications}, 506, 82-138.
  6. [6]  Nikiforov, V. (2007), \newblock The energy of graphs and matrices, \newblock { Journal of Mathematical Analysis $\&$ Applications}, 326(2), 1472-1475.
  7. [7]  Walikar, H.B., Ramane, H.S., and Hampiholi, P.R. (1999), \newblock On the energy of a graph, \newblock In { Graph Connections}.
  8. [8]  Estrada, E. (2000), \newblock Characterization of 3d molecular structure. \newblock { Chemical Physics Letters}, 319(5-6), 713-718.
  9. [9]  Estrada, E. (2002), \newblock Characterization of the folding degree of proteins, \newblock { Bioinformatics} 18(5), 697-704.
  10. [10]  Estrada, E. (2004), \newblock Characterization of the amino acid contribution to the folding degree of proteins, \newblock { Proteins-structure Function $\&$ Bioinformatics}, 54(4), 727-737.
  11. [11]  Ginosar, Y., Gutman, I., Mansour, T., and Schork, M. (2008), \newblock Estrada index and chebyshev polynomials, \newblock { Chemical Physics Letters}, 454(4-6), 145-147.
  12. [12]  Estrada, E. and Rodr\{\i}guez-Vel\azquez, J.A. (2005), \newblock Spectral measures of bipartivity in complex networks, \newblock { Phys. rev. e}, 72(4), 046105.
  13. [13]  Estrada, E. and Rodr\{\i}guez-Vel\azquez, J.A. (2005), \newblock Subgraph centrality in complex networks. \newblock { Physical Review E Statistical Nonlinear $\&$ Soft Matter Physics}, 71(5), 056103.
  14. [14]  Shang, Y. (2012), \newblock Biased edge failure in scale-free networks based on natural connectivity, \newblock { Indian Journal of Physics}, 86(6), 485-488.
  15. [15]  Shang, Y. (2012), \newblock Random lifts of graphs: Network robustness based on the estrada index, \newblock { Applied Mathematics E - Notes}, 12.
  16. [16]  {Clemente, G.P. and Cornaro, A.} (2015), \newblock Novel bounds for the normalized laplacian estrada and normalized energy index of graphs, \newblock { Mathematics Combinatorics}.
  17. [17]  Carmona, J.R. and Rodr\{i}guez, J. (2019), \newblock An increasing sequence of lower bounds for the estrada index of graphs and matrices, \newblock { Linear Alebra and its Applications}, 580(3), 200-211.
  18. [18]  Li, F., Liang, W., Zhao, H., Feng, H., and Ma, X. (2016), \newblock On the estrada index of cactus graphs. \newblock { Discrete Applied Mathematics}, 203(C), 94-105.
  19. [19]  Zhou, H.Q. and Zhou, Q. (2012), \newblock Laplacian estrada index of circulant graphs, \newblock { Journal of Shaoyang University}.
  20. [20]  Mudholkar, G.S., Freimer, M., and Subbaiah, P. (1984), \newblock An extension of hiflders inequality, \newblock { Journal of Mathematical Analysis $\&$ Applications}, 102(2).
  21. [21]  Diaz, J.B. and Metcalf, F.T. (1963), \newblock Stronger forms of a class of inequalities of g. p\{o}lya-g. szeg and l. v. kantorovich, \newblock { Bulletin of the American Mathematical Society}, 69(3), 415-419.
  22. [22]  Dragomir, S.S. (2003), \newblock A survey on cauchy-bunyakovsky-schwarz type discrete inequality, \newblock { Journal of Inequalities in Pure $\&$ Applied Mathematics}, 4(3).