Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Non-Autonomous Dynamics and Product Formula Approximation of Solution Operator

Discontinuity, Nonlinearity, and Complexity 9(4) (2020) 579--590 | DOI:10.5890/DNC.2020.12.011

Valentin A. Zagrebnov

Institut de Math'{e}matiques de Marseille - AMU, CMI - Technop^{o}le Ch^{a}teau-Gombert, 39 rue F. Joliot Curie, 13453 Marseille, France

Download Full Text PDF



The paper is devoted to non-autonomous dynamics, which is generated by positive self-adjoint operator $A$ and a family of non-negative self-adjoint operators $\{B(t)\}_{t\geq 0}$ defined in a separable Hilbert space. It is shown that solution operator $\{U(t,s)\}_{0 \leq s \leq t}$ of the evolution equation can be approximated in the operator norm topology by a product formula that involves $A$ and $B(t)$. We also established the rate of convergence of the product formula to the solution operator. These results are proved using the evolution semigroup approach to non-autonomous dynamics.


  1. [1]  Kato, T. (1961), Abstract evolution equation of parabolic type in Banach and Hilbert spaces, { Nagoya Math. J.}, 19, 93-125.
  2. [2]  Yagi, A. (1990), Parabolic evolution equation in which the coefficients are the generators of infinitly differentiable semigroups, II, { Funkcialaj Ekvacioj}, 33, 139-150.
  3. [3]  Ichinose, T. and Tamura, H. (1998), Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations, { Osaka J. Math.}, 35(4), 751-770.
  4. [4]  Nagel, R. and Nickel, G. (2002), Well-poseness of nonautonomous abstract {C}auchy problems, { {Progr. Nonlinear Diff.Eqn. and Their Appl.}}, 50, 279-293.
  5. [5]  Neidhardt, H., Stephan, A., and Zagrebnov, V.A. (2017), {On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations,} { {Nanosyst., Phys. Chem. Math.}}, 8(2), 202-215.
  6. [6]  Neidhardt, H., Stephan, A., and Zagrebnov, V.A. (2018), {Remarks on the operator-norm convergence of the Trotter product formula}, { {Int. Eqn. Oper. Theory}}, 90, 1-15.
  7. [7]  Neidhardt, H., Stephan, A., and Zagrebnov, V.A. (2020), {Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems}, {Publ. RIMS Kyoto Univ.}, 56, 83-135.
  8. [8]  Nickel, G. (2000), Evolution semigroups and product formulas for nonautonomous {C}auchy problems, { Math. Nachr}, 212, 101-116,.
  9. [9]  Evans, D.E. (1976), Time dependent perturbations and scattering of strongly continuous groups on {B}anach spaces, { Math. Ann.}, 221(3), 275-290.
  10. [10]  Howland, J.S. (1974), Stationary scattering theory for time-dependent {H}amiltonians. { Math. Ann.}, 207, 315-335.
  11. [11]  Neidhardt, H. (1981), On abstract linear evolution equations, {I}, { Math. Nachr.}, 103, 283-298.
  12. [12]  Monniaux, S. and Rhandi, A. (2000), Semigroup method to solve non-autonomous evolution equations, { {Semigroup Forum}}, 60, 122-134.
  13. [13]  Neidhardt, H. and Zagrebnov, V.A. (2009), Linear non-autonomous {C}auchy problems and evolution semigroups, { Adv. Differential Equations}, 14(3-4), 289-340.
  14. [14]  Arendt, W., Chill, R., Fornaro, S., and Poupaud, C. (2007), {$L^p$}-maximal regularity for non-autonomous evolution equations, { J. Differential Equations}, 237(1), 1-26.
  15. [15]  Neidhardt, H. (1979), { {Integration of Evolutionsgleichungen mit Hilfe von Evolutionshalbgruppen}}. Dissertation, AdW der DDR. Berlin.
  16. [16]  Trotter, H.F. (1959), On the product of semi-groups of operators, { Proc. Amer. Math. Soc.}, 10, 545-551.
  17. [17]  Ichinose, T., Tamura, H., Tamura, H., and Zagrebnov, V.A. (2001), Note on the paper: ``{T}he norm convergence of the {T}rotter-{K}ato product formula with error bound'' by {T}. {I}chinose and {H}. {T}amura. { Comm. Math. Phys.}, 221(3), 499-510.
  18. [18]  Kato. T. (1980), { Perturbation theory for linear operators}, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition.