Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


One-Particle Approximation as a Simple Playground for Irreversible Quantum Evolution

Discontinuity, Nonlinearity, and Complexity 9(4) (2020) 567--577 | DOI:10.5890/DNC.2020.12.010

A.E. Teretenkov

Department of Mathematical Methods for Quantum Technologies, Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Download Full Text PDF

 

Abstract

Both quantum information features and irreversible quantum evolution of the models arising in physical systems in one-particle approximation are discussed. It is shown that the calculation of the reduced density matrix and entanglement analysis are considerably simplified in this case. The irreversible quantum evolution described by Gorini--Kossakowski--Sudarshan--Lindblad equations in the one-particle approximation could be defined by a solution of a Shroedinger equation with a dissipative generator. It simplifies the solution of the initial equation on the one side and gives a physical interpretation of such a Shroedinger equation with non-Hermitian Hamiltonian on the other side.

References

  1. [1]  Chernega, V.N., Man'ko, O.V., and Man'ko, V.I. (2013), Generalized qubit portrait of the qutrit-state density matrix, Journal of Russian Laser Research, 34(4), 383-387.
  2. [2]  Chernega, V.N., Man'ko, O.V., and Man'ko, V.I. (2014), New inequality for density matrices of single qudit states, Journal of Russian Laser Research, 35(5), 457-461.
  3. [3]  Chernega, V.N., Man'ko, O.V., and Man'ko, V.I. (2014), Subadditivity Condition for Spin Tomograms and Density Matrices of Arbitrary Composite and Noncomposite Qudit Systems, Journal of Russian Laser Research, 35(3), 278-290.
  4. [4]  Manko, V.I., and Sabyrgaliyev, T. (2019), New entropic inequalities for qudit (spin j= 9/2), Journal of Russian Laser Research, 40, 522-529.
  5. [5]  Teretenkov, A.E. (2019), Pseudomode approach and vibronic non-Markovian phenomena in light harvesting complexes, Proc. Steklov Inst. Math., 306, 242-256.
  6. [6]  Teretenkov, A.E. (2019), Non-Markovian Evolution of Multi-level System Interacting with Several Reservoirs. Exact and Approximate, Lobachevskii Journal of Mathematics, 40(10), 1587-1605.
  7. [7]  Sachdev, S. (1984), Atom in a damped cavity, Physical Review A, 29(5), 2627.
  8. [8]  Garraway, B.M. (1997), Nonperturbative decay of an atomic system in a cavity, Physical Review A, 55(3), 2290.
  9. [9]  Lopez-Saldivar, J.A., Castanos, O., Man'ko, M.A., and Man'ko, V.I. (2019), A New Mechanism of Open System Evolution and Its Entropy Using Unitary Transformations in Noncomposite Qudit Systems, Entropy, 21(8), 736.
  10. [10]  Gorini, V., Kossakowski, A., and Sudarshan, E.C.G. (1976), Completely positive dynamical semigroups of N-level systems, Journal of Mathematical Physics, 17(5), 821-825.
  11. [11]  Lindblad, G. (1976), On the generators of quantum dynamical semigroups, Communications in Mathematical Physics, 48(2), 119-130. %
  12. [12]  Accardi, L., Lu, Y.G., and Volovich, I. (2002), Quantum theory and its stochastic limit, Springer-Verlag: New York.
  13. [13]  Alicki, R. and Lendi, K. (2007), Quantum dynamical semigroups and applications, (Vol. 717), Springer-Verlag: New York.
  14. [14]  Breuer, H.P. and Petruccione, F. (2002), The theory of open quantum systems, Oxford University Press: Oxford.
  15. [15]  Trushechkin, A.S. (2017), On general production of entropy in open Markov quantum systems, Itogi Nauki i Tekhniki. Seriya ``Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory'', 138, 82-98.
  16. [16]  Trushechkin, A.S. (2018), Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional, Proceedings of the Steklov Institute of Mathematics, 301(1), 262-271.
  17. [17]  Trushechkin, A.S. (2019), On the General Definition of the Production of Entropy in Open Markov Quantum Systems, Journal of Mathematical Sciences, 241(2), 191-209.
  18. [18]  Dodonov, V.V. and Man'ko, V.I. (1988), Evolution equations for the density matrices of linear open systems. Classical and Quantum Effects in Electrodynamics, Proceedings of the Lebedev Physical Institute, Nova Science, Commack, New York, 176, 53-60.
  19. [19]  Dodonov, V.V. and Manko, O.V. (1985), Quantum damped oscillator in a magnetic field, Physica A: Statistical Mechanics and its Applications, 130(1-2), 353-366.
  20. [20]  Heinosaari, T., Holevo, A.S., and Wolf, M.M. (2010), The semigroup structure of Gaussian channels, Quantum Information and Computation, 10(7-8) , 619-635.
  21. [21]  Prosen, T. and Zunkovic, B. (2010), Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition, New Journal of Physics, 12(2), 025016.
  22. [22]  Teretenkov, A.E. (2016), Quadratic dissipative evolution of Gaussian states, Mathematical Notes, 100(3-4), 642-646.
  23. [23]  Teretenkov, A.E. (2017), Quadratic dissipative evolution of Gaussian states with drift, Mathematical Notes, 101(1-2), 341-351.
  24. [24]  Teretenkov, A.E. (2017), Quadratic fermionic dynamics with dissipation, Mathematical Notes, 102(5-6), 846-853.
  25. [25]  Teretenkov, A.E. (2019), Dynamics of Moments for Quadratic GKSL Generators, Mathematical Notes, 106(1-2), 151-155.
  26. [26]  Teretenkov, A.E. (2019), Irreversible quantum evolution with quadratic generator: Review,Infinite Dimensional Analysis, Quantum Probability and Related Topics, 22(4), 1930001. %
  27. [27]  Nielsen, M.A. and Chuang, I.L. (2000), Quantum information and quantum computation, Cambridge University Press: Cambridge.
  28. [28]  Holevo, A.S. (2012), Quantum systems, channels, information: a mathematical introduction, 16, Walter de Gruyter.
  29. [29]  Ohya, M. and Volovich, I. (2011), Mathematical foundations of quantum information and computation and its applications to nano-and bio-systems, Springer-Verlag: New York.
  30. [30]  Aref'eva, I. and Volovich, I. (2016), Holographic photosynthesis, arXiv preprint arXiv:1603.09107.
  31. [31]  Davies, E.B. (1976), Quantum theory of open systems, Academic Press: London.
  32. [32]  Bradler, K., Wilde, M.M., Vinjanampathy, S., and Uskov, D.B. (2010), Identifying the quantum correlations in light-harvesting complexes, Physical Review A, 82(6), 062310.
  33. [33]  George, A. and Ikramov, K.D. (2005), On the properties of accretive-dissipative matrices, Mathematical Notes, 77(5-6), 767-776.
  34. [34]  Engel, K.J. and Nagel, R. (2000), One-parameter semigroups for linear evolution equations, Springer-Verlag: New York.
  35. [35]  Pechen, A.N. and Ilin, N.B. (2017), Control landscape for ultrafast manipulation by a qubit, Journal of Physics A: Mathematical and Theoretical, 50(7), 75301.
  36. [36]  Ilin, N.B. and Pechen, A.N (2018), Conditions for the absence of local extrema in problems of quantum coherent control, Proc. Steklov Inst. Math., 301, 109-113.
  37. [37]  Morzhin, O.V. and Pechen, A.N. (2019), Minimal Time Generation of Density Matrices for a Two-Level Quantum System Driven by Coherent and Incoherent Controls, International Journal of Theoretical Physics, 1-9.
  38. [38]  Morzhin, O.V. and Pechen, A.N. (2019), Krotov method for optimal control of closed quantum systems, Uspekhi Mat. Nauk, 74(5), 83-144.
  39. [39]  Imamoglu, A. (1994), Stochastic wave-function approach to non-Markovian systems, Physical Review A, 50(5), 3650.
  40. [40]  Garraway, B.M. and Knight, P.L. (1996), Cavity modified quantum beats, Physical Review A, 54(4), 3592.
  41. [41]  Garraway, B.M. (1997), Decay of an atom coupled strongly to a reservoir, Physical Review A, 55(6), 4636.
  42. [42]  Dalton, B.J., Barnett, S.M., and Garraway, B.M. (2001), Theory of pseudomodes in quantum optical processes, Physical Review A, 64(5), 053813.
  43. [43]  Garraway, B.M. and Dalton, B.J. (2006), Theory of non-Markovian decay of a cascade atom in high-Q cavities and photonic band gap materials, Journal of Physics B: Atomic, Molecular and Optical Physics, 39(15), S767.
  44. [44]  Luchnikov, I.A., Vintskevich, S.V., Ouerdane, H., and Filippov, S.N. (2019), Simulation complexity of open quantum dynamics: Connection with tensor networks, Physical Review Letters, 122(16), 160401.
  45. [45]  Kozyrev, S.V., Mironov, A.A., Teretenkov, A.E., and Volovich, I.V. (2017), Flows in non-equilibrium quantum systems and quantum photosynthesis, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 20(4), 1750021. %
  46. [46]  Volovich, I.V. and Sakbaev, V.Z. (2018), On Quantum Dynamics on C*-Algebras. Proceedings of the Steklov Institute of Mathematics, 301(1), 25-38.
  47. [47]  Amosov, G.G. and Filippov, S.N. (2017), Spectral properties of reduced fermionic density operators and parity superselection rule, Quantum Information Processing, 16(1), 2-16.
  48. [48]  Friedrichs, K.O. (1948), On the perturbation of continuous spectra, Communications on Pure and Applied Mathematics, 1(4), 361-406.
  49. [49]  Kossakowski, A. and Rebolledo, R. (2007), On non-Markovian time evolution in open quantum systems, Open Systems and Information Dynamics, 14(3), 265-274.
  50. [50]  Prigogine, I. (1995), Why irreversibility? The formulation of classical and quantum mechanics for nonintegrable systems, International Journal of Bifurcation and Chaos, 5(01), 3-16.
  51. [51]  Petrosky, T., Prigogine, I., and Tasaki, S. (1991), Quantum theory of non-integrable systems, Physica A, 173(1/2), 175-242.
  52. [52]  Antoniou, I.E. and Prigogine, I. (1993), Intrinsic irreversibility and integrability of dynamics, Physica A: Statistical Mechanics and its Applications, 192(3), 443-464.
  53. [53]  Karpov, E., Prigogine, I., Petrosky, T., and Pronko, G. (2000), Friedrichs model with virtual transitions. Exact solution and indirect spectroscopy, Journal of Mathematical Physics, 41(1), 118-131.
  54. [54]  Parravicini, G., Gorini, V., and Sudarshan, E.C.G. (1980), Resonances, scattering theory, and rigged Hilbert spaces, Journal of Mathematical Physics, 21(8), 2208-2226.
  55. [55]  Antoniou, I., Gadella, M., Mateo, J., and Pronko, G.P. (2003), Gamow Vectors in Exactly Solvable Models, International Journal of Theoretical Physics, 42(10). %
  56. [56]  Wilkie, J. (2000), Positivity preserving non-Markovian master equations. Physical Review E, 62(6), 8808.
  57. [57]  Chruscinski, D. and Kossakowski, A. (2010), Non-Markovian quantum dynamics: local versus nonlocal, Physical Review Letters, 104(7), 070406.
  58. [58]  Trushechkin, A.S. (2019), Calculation of coherences in Forster and modified Redfield theories of excitation energy transfer, J. Chem. Phys., 151(7), 074101.
  59. [59]  Trushechkin, A.S. (2019), Dynamics of Reservoir Observables within the Zwanzig Projection-Operator Method in the Theory of Open Quantum Systems, Proc. Steklov Inst. Math., 306, 257-270.