Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Almost Periodicity in Chaos

Discontinuity, Nonlinearity, and Complexity 7(1) (2018) 15--29 | DOI:10.5890/DNC.2018.03.002

Marat Akhmet$^{1}$; Mehmet Onur Fen$^{2}$

$^{1}$ Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

$^{2}$ Department of Mathematics, TED University, 06420 Ankara, Turkey

Download Full Text PDF

 

Abstract

Periodicity plays a significant role in the chaos theory from the beginning since the skeleton of chaos can consist of infinitely many unstable periodic motions. This is true for chaos in the sense of Devaney [1], Li-Yorke [2] and the one obtained through period-doubling cascade [3]. Countable number of periodic orbits exist in any neighborhood of a structurally stable Poincar´e homoclinic orbit, which can be considered as a criterion for the presence of complex dynamics [4–6]. It was certified by Shilnikov [7] and Seifert [8] that it is possible to replace periodic solutions by Poisson stable or almost periodic motions in a chaotic attractor. Despite the fact that the idea of replacing periodic solutions by other types of regular motions is attractive, very few results have been obtained on the subject. The present study contributes to the chaos theory in that direction. In this paper, we take into account chaos both through a cascade of almost periodic solutions and in the sense of Li-Yorke such that the original Li-Yorke definition is modified by replacing infinitely many periodic motions with almost periodic ones, which are separated from the motions of the scrambled set. The theoretical results are valid for systems with arbitrary high dimensions. Formation of the chaos is exemplified by means of unidirectionally coupled Duffing oscillators. The controllability of the extended chaos is demonstrated numerically by means of the Ott-Grebogi-Yorke [9] control technique. In particular, the stabilization of tori is illustrated.

References

  1. [1]  Devaney, R. (1987), An Introduction to Chaotic Dynamical Systems, Addison-Wesley: United States of America.
  2. [2]  Li, T.Y. and Yorke, J.A. (1975), Period three implies chaos, The Am. Math. Mon., 82, 985-992.
  3. [3]  Feigenbaum,M.J. (1980), Universal behavior in nonlinear systems, Los Alamos Science, 1, 4-27.
  4. [4]  Gonchenko, S.V., Shil'nikov, L.P., and Turaev, D.V. (1996), Dynamical phenomena in systems with structurally unstable Poincar´e homoclinic orbits, Chaos, 6, 15-31.
  5. [5]  Shil'nikov, L.P. (1967), On a Poincaré-Birkhoff problem, Math. USSR-Sbornik, 3, 353-371.
  6. [6]  Smale, S. (1965), Diffeomorphisms with many periodic points, Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse, Princeton University Press: Princeton, NJ, pp. 63-70.
  7. [7]  Shilnikov, L. (2002), Bifurcations and strange attractors, Proceedings of the International Congress ofMathematicians, vol. III., Higher Ed. Press: Beijing, pp. 349-372.
  8. [8]  Seifert, G. (1997), On chaos in general semiflows, Nonlinear Anal.-Theor., 28, 1719-1727.
  9. [9]  Ott, E., Grebogi, C. and Yorke, J.A. (1990), Controlling chaos, Phys. Rev. Lett., 64, 1196-1199.
  10. [10]  Andersson, K.G. (1994), Poincaré's discovery of homoclinic points, Arch. Hist. Exact Sci., 48, 133-147.
  11. [11]  Cartwright, M. and Littlewood, J. (1945), On nonlinear differential equations of the second order I: The equation y−k(1−y2)'y+y = bkcos(λt+a), k large, J. London Math. Soc., 20, 180-189.
  12. [12]  Levinson, N. (1949), A second order differential equation with singular solutions, Ann. of Math., 50, 127-153.
  13. [13]  Lorenz, E.N. (1963), Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141.
  14. [14]  Ueda, Y. (1978), Random phenomena resulting from non-linearity in the system described by Duffing’s equation, Trans. Inst. Electr. Eng. Jpn., 98A, 167-173.
  15. [15]  Grebogi, C. and Yorke, J.A. (1997), The Impact of Chaos on Science and Society, United Nations University Press: Tokyo.
  16. [16]  Huang,W. and Ye, X. (2002), Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl., 117, 259-272.
  17. [17]  Sharkovskii, A.N. (1964), Coexistence of cycles of a continuous map of the line into itself, Ukr. Math. J., 16, 61-71 (In Russian).
  18. [18]  Myrberg, P.J. (1958), Iteration von Quadratwurzeloperationen. I, Ann. Acad. Sci. Fenn. Ser. A, 256, 1-10.
  19. [19]  Myrberg, P.J. (1959), Iteration von Quadratwurzeloperationen. II, Ann. Acad. Sci. Fenn. Ser. A, 268, 1-10.
  20. [20]  Myrberg, P.J. (1963), Iteration von Quadratwurzeloperationen. III, Ann. Acad. Sci. Fenn. Ser. A, 336, 1-10.
  21. [21]  Sander, E. and Yorke, J.A. (2011), Period-doubling cascades galore, Ergod. Th. & Dynam. Sys., 31, 1249-1267.
  22. [22]  Sander, E. and Yorke, J.A. (2012), Connecting period-doubling cascades to chaos, Int. J. Bifurcat. Chaos, 22, 1250022.
  23. [23]  Barrio, R., Martinez, M.A., Serrano, S., and Shilnikov, A. (2014), Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons, Chaos, 24, 023128.
  24. [24]  Lacitignola, D., Petrosillo, I., and Zurlini, G. (2010), Time-dependent regimes of a tourism-based social-ecological system: Period-doubling route to chaos, Ecol. Complex., 7, 44-54.
  25. [25]  Hanias, M.P., Avgerinos, Z., and Tombras, G.S. (2009), Period doubling, Feigenbaum constant and time series prediction in an experimental chaotic RLD circuit, Chaos Soliton. Fract., 40, 1050-1059.
  26. [26]  Simpson, T.B., Liu, J.M., Gavrielides, A., Kovanis, V., and Alsing, P.M. (1994), Period-doubling route to chaos in a semiconductor laser subject to optical injection, Appl. Phys. Lett., 64, 3539-3541.
  27. [27]  Akhmet, M.U. (2009), Li-Yorke chaos in the impact system, J. Math. Anal. Appl., 351, 804-810.
  28. [28]  Akhmet, M.U. (2009), Dynamical synthesis of quasi-minimal sets, Int. J. Bifurcat. Chaos, 19, 2423-2427.
  29. [29]  Akhmet, M.U. (2009), Creating a chaos in a system with relay, Int. J. Qual. Theory Differ. Equ. Appl., 3, 3-7.
  30. [30]  Akhmet, M.U. (2009), Devaney's chaos of a relay system, Commun. Nonlinear Sci. Numer. Simulat., 14, 1486-1493.
  31. [31]  Akhmet, M.U. and Fen, M.O. (2012), Chaotic period-Doubling and OGY control for the forced Duffing equation, Commun. Nonlinear Sci. Numer. Simulat., 17, 1929-1946.
  32. [32]  Akhmet, M.U. and Fen, M.O. (2013), Replication of chaos, Commun. Nonlinear Sci. Numer. Simulat., 18, 2626-2666.
  33. [33]  Akhmet,M.U. and Fen, M.O. (2013), Shunting inhibitory cellular neural networks with chaotic external inputs, Chaos, 23, 023112.
  34. [34]  Akhmet, M. and Fen, M.O. (2014), Chaotification of impulsive systems by perturbations, Int. J. Bifurcat. Chaos, 24, 1450078.
  35. [35]  Akhmet, M.U. and Fen, M.O. (2014), Entrainment by chaos, J. Nonlinear Sci., 24, 411-439.
  36. [36]  Akhmet,M. and Fen, M.O. (2014), Generation of cyclic/toroidal chaos by Hopfield neural networks, Neurocomputing, 145, 230-239.
  37. [37]  Akhmet, M.U. and Fen, M.O. (2015), Attraction of Li-Yorke chaos by retarded SICNNs, Neurocomputing, 147, 330- 342.
  38. [38]  Akhmet,M. and Fen, M.O. (2016), Replication of Chaos in Neural Networks, Economics and Physics, Springer-Verlag: Berlin, Heidelberg.
  39. [39]  Brown, R. and Chua, L. (1993), Dynamical synthesis of Poincaré maps, Int. J. Bifurcat. Chaos, 3, 1235-1267.
  40. [40]  Brown, R. and Chua, L. (1996), From almost periodic to chaotic: the fundamental map, Int. J. Bifurcat. Chaos, 6, 1111-1125.
  41. [41]  Brown, R. and Chua, L. (1997), Chaos: generating complexity from simplicity, Int. J. Bifurcat. Chaos, 7, 2427-2436.
  42. [42]  Brown, R., Berezdivin, R. and Chua, L. (2001), Chaos and complexity, Int. J. Bifurcat. Chaos, 11, 19-26.
  43. [43]  Nemytskii, V.V. and Stepanov, V.V. (1960), Qualitative Theory of Differential Equations, Princeton University Press: New Jersey.
  44. [44]  Smale, S. (1967), Differentiable dynamical systems, Bull. Amer. Math. Soc., 73, 747-817.
  45. [45]  Marotto, F.R. (1978), Snap-back repellers imply chaos in Rn, J. Math. Anal. Appl., 63, 199-223.
  46. [46]  Li, P., Li, Z., Halang, W.A., and Chen, G. (2007), Li-Yorke chaos in a spatiotemporal chaotic system, Chaos Soliton. Fract., 33, 335-341.
  47. [47]  Akin E. and Kolyada, S. (2003), Li-Yorke sensitivity, Nonlinearity, 16, 1421-1433.
  48. [48]  Kloeden, P. and Li, Z. (2006), Li-Yorke chaos in higher dimensions: a review, J. Differ. Equ. Appl., 12, 247-269.
  49. [49]  Shi Y. and Chen, G. (2004), Chaos of discrete dynamical systems in complete metric spaces, Chaos Soliton. Fract., 22, 555-571.
  50. [50]  Shi Y. and Chen, G. (2005), Discrete chaos in Banach spaces, Sci. China Ser. A, 48, 222-238.
  51. [51]  Izhikevich, E.M. (2007), Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, TheMIT Press: Cambridge.
  52. [52]  Pasemann, F., Hild,M., and Zahedi, K. (2003), SO(2)-networks as neural oscillators, ComputationalMethods in Neural Modeling Lecture Notes in Computer Science, 2686, 144-151.
  53. [53]  Watanabe, M., Aihara, K., and Kondo, S. (1997), Self-organization dynamics in chaotic neural networks, Control Chaos Math. Modell., 8, 320-333.
  54. [54]  Gonzáles-Miranda, J.M. (2004), Synchronization and Control of Chaos, Imperial College Press: London.
  55. [55]  Hunt, B.R., Ott, E., and Yorke, J.A. (1997), Differentiable generalized synchronization of chaos, Phys. Rev. E, 55, 4029-4034.
  56. [56]  Kapitaniak, T. (1994), Synchronization of chaos using continuous control, Phys. Rev. E, 50, 1642-1644.
  57. [57]  Kocarev, L. and Parlitz, U. (1996), Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys. Rev. Lett., 76, 1816-1819.
  58. [58]  Macau, E.E.N., Grebogi, C., and Lai, Y.-C. (2002), Active synchronization in nonhyperbolic hyperchaotic systems, Phys. Rev. E, 65, 027202.
  59. [59]  Pecora, L.M. and Carroll, T.L. (1990), Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-825.
  60. [60]  Rulkov, N.F., Sushchik, M.M., Tsimring, L.S. and Abarbanel, H.D.I. (1995), Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51, 980-994.
  61. [61]  Abarbanel, H.D.I., Rulkov, N.F., and Sushchik, M.M. (1996), Generalized synchronization of chaos: The auxiliary system approach, Phys. Rev. E, 53, 4528-4535.
  62. [62]  Afraimovich, V., Chazottes, J.-R., and Cordonet, A. (2001), Nonsmooth functions in generalized synchronization of chaos, Phys. Lett. A, 283, 109-112.
  63. [63]  Hale, J.K. (1980), Ordinary Differential Equations, Krieger Publishing Company: Malabar.
  64. [64]  Franceschini, V. (1980), A Feigenbaum sequence of bifurcations in the Lorenz model, J. Stat. Phys., 22, 397-406.
  65. [65]  S. Sato, M. Sano, and Y. Sawada, Universal scaling property in bifurcation structure of Duffing's and of generalized Duffing's equations, Phys. Rev. A, 28 (1983) 1654–1658.
  66. [66]  Wiggins, S. (1988), Global Bifurcations and Chaos, Springer: New York.
  67. [67]  Fink, A.M. (1974), Almost Periodic Differential Equations, Springer-Verlag: Heidelberg.
  68. [68]  Akhmet, M., Fen, M.O., and Kıvılcım, A. (2016), Li-Yorke chaos generation by SICNNs with chaotic/almost periodic postsynaptic currents, Neurocomputing, 173, 580-594.
  69. [69]  Hale, J. and Koçak, H. (1991), Dynamics and Bifurcations, Springer-Verlag: New York.
  70. [70]  Schuster, H.G. (1999), Handbook of Chaos Control, Wiley-Vch: Weinheim.
  71. [71]  Pyragas, K. (1992), Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428.
  72. [72]  Pomeau, Y. and Manneville, P. (1980), Intermittent transition to turbulence in dissipative dynamical systems, Commun. Math. Phys., 74, 189-197.