Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Asymptotic Behavior of Solutions of Singular Integro-differential Equations

Discontinuity, Nonlinearity, and Complexity 5(2) (2016) 145--152 | DOI:10.5890/DNC.2016.06.004

M.K. Dauylbaev; A.E. Mirzakulova

Department of Mathematics and Mechanics, Kazakh National University named after al-Farabi Almaty, Kazakhstan

Download Full Text PDF



We study the asymptotic behavior of the two-point integral boundary value problem for third order integro-differential equations with the small parameter at two highest derivatives. The asymptotic estimations of the solution of the integral boundary value problem is obtained. The obtained results shown that the solution of integral boundary value problem on both sides of given segment has the initial jumps with different orders.


  1. [1]  Schlesinger, L. (1907), Über asymptotische darstellungen der lösungen linearer differential systeme als funktionen eines parameters, Mathematische Annalen,63(3), 277-300.
  2. [2]  Birkhoff, G.D. (1908), On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Transactions of the American Mathematical Society, 9(2), 219-231.
  3. [3]  Noaillon, P.(1912), Developpements asymptotiques dans les équations différentielles linéaires à paramètre variable, Mem. Soc. Sci. Liege, 3(11), 197.
  4. [4]  Wasow,W.(1956), Singular perturbations of boundary value problems for nonlinear differential equations of the second order, Comm. On Pure and Appl. Math., 9, 93-113.
  5. [5]  Nayfeh, A. (1973), Perturbation Methods, John Wiley, New York.
  6. [6]  Nagumo, M. (1939), Uber das Verhalten der Intergrale von λy+f(x,y,y,λ) = 0 fur λ→0 ibid, 21, 529-534.
  7. [7]  Tihonov, A.N.(1948), O zavisimosti reshenij differencial'nyh uravnenij ot malogo parametra, Matematicheskij sbornik, T. 22(2), 193-204, (In Russian).
  8. [8]  Tihonov, A.N.(1950), O sistemah differencial'nyh uravnenij, soderzhashhih parametry, Matematicheskij sbornik, 27(69), 147-156, (In Russian).
  9. [9]  Vishik, M.I. and Lyusternik, L.A. (1957), (1962), Regular degeneration and boundary layer for linear differential equations with small parameter multiplying the highest derivatives, Usp.Mat. Nauk, 12, 3-122, (In Russian), Amer. Math. Soc. Transl., 20(2), 239-364.
  10. [10]  Vishik, I.and Lyusternik, L.A. (1960), On the initial jump for non-linear differential equations containing a small parameter, Doklady Akademii Nauk SSSR, 132(6), 1242-1245, (in Russian).
  11. [11]  Bogoliubov, N. and Mitropolskii, Y.A.(1961), Asymptotic methods in the theory of nonlinear oscillations, Hindustan Publ. Corp., Delhi.
  12. [12]  Vasil'eva, A. and Butuzov, V. (1983), Singularly perturbed differential equations of parabolic type, in Asymptotic Analysis II, Lecture Notes in Math., Springer-Verlag, Berlin, 38-75.
  13. [13]  Vasil'eva, A., Butuzov, V., and Kalachev, L.(1995), The boundary function method for singular perturbation problems, SIAM Studies in Applied Mathematics, 14, SIAM, Philadeplhia.
  14. [14]  O'Malley, R.(1974), Introduction to singular perturbations, Academic Press, New York.
  15. [15]  O'Malley, R.(1991), Singular perturbations methods for ordinary differential equations, Springer-Verlag, Berlin, Heidelberg, New York.
  16. [16]  Smith, D.R. (1985), Singular-perturbation theory, Cambridge University Press, Cambridge.
  17. [17]  Eckhaus,W.(1973),Matched asymptotic expansions and singular perturbations, North-Holland, Amsterdam, London.
  18. [18]  Chang, K. and Howes, F.(1984), Nonlinear Singular Perturbation Phenomena: Theory and Application, Springer- Verlag, New York.
  19. [19]  Kevorkian, J. and Cole, J.D. (1981), Singular perturbation methods in applied mathematics, Springer-Verlag, Berlin, Heidelberg, New York.
  20. [20]  Sanders, and Verhulst, F. (1985), Averaging methods in nonlinear dynamical systems, Springer-Verlag, Berlin, Heidelberg, New York.
  21. [21]  Mishchenko, E. and Rozov, N. (1980), Differential equations with small parameter and relaxation oscillations, Plenum Press, New York.
  22. [22]  Lomov, S.(1992), Introduction to the general theory of singular perturbations, American Mathematical Society, Providence, RI.
  23. [23]  Kasymov, K.A.(1962), Ob asimptotike reshenija zadachi Koshi s bol'shimi nachal'nymi uslovijami dlja nelinejnogo obyknovennogo differencial'nogo uravnenija, soderzhashhego malyj parametr, Uspehi matematicheskih nauk, 17, vyp. 5, 187-188.
  24. [24]  Kasymov, K.A. (1968), O zadache s nachal'nym skachkom dlja nelinejnyh sistem differencial'nyh uravnenij, soderzhashhih malyj parametr, DAN SSSR., 179, Vyp. 2, 275-278, (in Russian).
  25. [25]  Kasymov, K.A.(1968), Asimptotika reshenija zadachi Koshi s nachal'nym skachkom dlja nelinejnyh sistem integrodifferencial'nyh uravnenij, soderzhashhih malyj parametr pri starshej proizvodnoj, Izvestija AN KazSSR. Serija fizikomatematicheskaja, 5, 69-72 (in Russian).
  26. [26]  Kasymov,K.A. (1971), Asimptotika reshenija zadachi s nachal'nymi skachkami dlja sistemy differencial'nyh uravnenij giperbolicheskogo tipa s malym parametrom pri proizvodnoj, DAN SSSR., 196, Vyp. 2, 274-277 (in Russian).