Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Spin-transfer Torque and Topological Changes of Magnetic Textures

Discontinuity, Nonlinearity, and Complexity 5(1) (2016) 19--24 | DOI:10.5890/DNC.2016.03.003

Alberto Verga

Aix-Marseille Université, IM2NP, Campus St Jerme, service 142, 13387 Marseille, France

Download Full Text PDF



The electric manipulation of magnetic textures in nanostructures, important for applications in spintronics, can be realized through the spin-transfer torque mechanism: a spin-polarized current can modify the magnetization of skyrmions and magnetic vortices, and eventually change the topology of the magnetization. The spin-transfer torque and the intrinsic space and time scales of the topological changes are essentially quantum mechanical. We model the interaction between itinerant and fixed spins with a simple tightbinding hamiltonian in a square lattice. The dynamics is described by the Schrödinger equation for the electrons and the Landau-Lifshitz equation for the evolution of the magnetic texture. We investigate the phenomenology of the topological change of a Belavin-Polyakov skyrmion under the action of a spin-polarized current and show that adding an exchange dissipation term, regularizes the transition towards a ferromagnetic state.


We thank R. G. Elias for useful discussions.


  1. [1]  Baryakhtar,V.G., Ivanov, B.A., Sukstanskii, A.L., and Melikhov, E.Yu. (1997), Soliton relaxation in magnets, Physical Review B, 56(2).
  2. [2]  Belavin, A.A. and Polyakov, A.M. (1975), Metastable states of two-dimensional isotropic ferromagnets, JETP Lett., 22, 245-247..
  3. [3]  Elías, R.G. and Verga, A.D. (2014), Topological changes of two-dimensional magnetic textures, Phys. Rev. B, 89(13), 134405.
  4. [4]  Landau, L.D. and Lifshitz, E.M. (1935), On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Zeitsch. der Sow., 8, 153-169. reprint: Ukr. J. Phys. 2008, Vol. 53, Special Issue, p.14-22.
  5. [5]  Muhlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A. Georgii, R., and Boni, P. (2009), Skyrmion Lattice in a Chiral Magnet, Science, 323(5916), 915-919.
  6. [6]  Ralph, D.C. and Stiles, M.D. (2008), Spin transfer torques, Journal of Magnetism and Magnetic Materials, 320(7), 1190-1216.
  7. [7]  Romming, N., Hanneken, C., Menzel, M., Bickel, J.E.,Wolter, B., von Bergmann, K. Kubetzka, A., andWiesendang, R. (2013), Writing and deleting single magnetic skyrmions, Science, 341(6146), 636-639, 08.
  8. [8]  VanWaeyenberge, B., Puzic, A., Stoll, H., Chou, K.W., Tyliszczak, T., Hertel, R., Fahnle, M., Bruckl, H., Rott, K., Reiss, G., Neudecker, I., Weiss, D., Back, C.H., and Schutz, G. (2006), Magnetic vortex core reversal by excitation with short bursts of an alternating field, Nature, 444 (7118),461-464, 11.
  9. [9]  Zakharov, V.E. (1972), Collapse of langmuir waves, Sov. Phys. JETP, 35 (5), 908-914.
  10. [10]  Zhang, S. and Li, Z. (2004), Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets, Phys. Rev. Lett., 93, 127204.