Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Adaptive Memory Identification of Fractional Order Systems

Discontinuity, Nonlinearity, and Complexity 4(4) (2015) 413--428 | DOI:10.5890/DNC.2015.11.005

Yang Zhao; Yan Li; Fengyu Zhou

School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, PR China

Download Full Text PDF

 

Abstract

This paper deals with a previously ignored problem that how to find the memory (initialization function) of fractional order system by using the recent sampled input-output data. A novel and practical strategy is proposed to estimate the initialization function, which adapts to all system parameters but fractional order. To implement this method, a P-type order learning approach is introduced to identify the system order separably and accurately, thanks to the fractional order sensitivity function. The initialization response is computed through an iterative learning identification strategy that guarantees the accuracy and adaptiveness simultaneously. Along with the estimations of order and initialization response, a practical piecewise identification criterion of initialization function is established by using the least squares and instrumental variable methods. The above strategy is available for both Caputo and Riemann-Liouville fractional order systems, where the initial values are applied rather than the initial conditions. Two illustrated examples are provided to support the conclusions.

Acknowledgments

The authors would like to thank all Editors and Reviewers for their organizations and valuable comments. This work is supported by the National Natural Science Foundation of China (61374101,61375084,61104009).

References

  1. [1]  Pritz, T. (2003), Five-parameter fractional derivative model for polymeric damping materials, Joumal of Sound and Vibration, 265(5), 935-952.
  2. [2]  Lee, H-H. and Tsai, C.S. (1994), Analytieal model of viscoelastic dampers for seismic mitigation of structures, Computers and Struetures, 50(1), 111-121.
  3. [3]  Dumlu, A. and Erenturk, K. (2014), Trajectory tracking control for a 3-DOF parallel manipulator using fractional order PIλDμ control, IEEE Transactions on Industrial Electronics, 61(7), 3417-3426.
  4. [4]  Gulistan, S., Abbas, M. and Syed, A.A. (2014), Fractional dual fields for a slab placed in unbounded dielectric magnetic medium. International Journal of Applied Electromagnetics and Mechanics, International Journal of Applied Electromagnetics and Mechanics, 46(1), 11-21.
  5. [5]  Li Y, Zhai L, Chen Y Q, et al. (2014), Fractional-order iterative learning control and identification for fractional-order Hammerstein system, 2014 IEEE 11th World Congress on Intelligent Control and Automation (WCICA), 840-845.
  6. [6]  Liu Y, Xue D, Chen Z, et al. (2014), Fractional order model identification for Electro-Active smart actuator, 2014 11th World Congress on Intelligent Control and Automation (WCICA), 3192-3195.
  7. [7]  Liu X, Liang G. (2014), An Algorithm for Fractional Order System Identification, 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), 66-71.
  8. [8]  Victor, S., Malti, R., Garnier, H. and Oustaloup, A. (2013), Parameter and differentiation order estimation in fractional models. Automatica, 49(4), 926-935.
  9. [9]  Battaglia, J.L. , Cois, O., Puigsegur, L. and Oustaloup, A. (2001), Solving an inverse heat conduction problem using a non-integer identified model. International Journal of Heat and Mass Transfer, 44(14), 2671-2680.
  10. [10]  Sun, H.G., Chen, W. and Chen, Y.Q. (2009), Variable-order fractional differential operators in anomalous diffusion modeling, Physica A: Statistical Mechanics and its Applications, 388(21), 4586-4592.
  11. [11]  Bai, J. and Feng, X.C. (2007), Fractional-order anisotropic diffusion for image denoising, IEEE Transactions on Image Processing, 16(10), 2492-2502.
  12. [12]  Yuan, L.G., and Yang, Q.G. (2012), Parameter identification and synchronization of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17(1), 305-316.
  13. [13]  Vanbeylen, L. (2014), A fractional approach to identifyWiener-Hammerstein systems, Automatica, 50(3), 903-909.
  14. [14]  Li, Y., Chen, Y.Q., Ahn H.S. and Tian, G.H. (2013), A survey on fractional-order iterative learning control, Journal of Optimization Theory and Applications, 156(1), 127-140.
  15. [15]  Jesus, I.S., and Machado, J.A.T. (2007). Application of fractional calculus in the control of heat systems, Journal of Advanced Computational Intelligence and Intelligent Informatics, 11(9), 1086-1091.
  16. [16]  Cugnet, M., Sabatier, J., Laruelle, S., Grugeon, S., Sahut, B., Oustaloup, A. and Tarascon J.M. (2010), On lead-acidbattery resistance and cranking-capability estimation, IEEE Transactions on Industrial Electronics, 57(3), 909-917.
  17. [17]  Sabatier, J., Cugnet, M., Laruelle, S., Grugeon, S., Sahut, B., Oustaloup, A., and Tarascon, J.M. (2010), A fractional order model for lead-acid battery crankability estimation, Communications in Nonlinear Science and Numerical Simulation, 15(5), 1308-1317.
  18. [18]  Zhong, J. and Li, L. (2014), Fractional-order system identification and proportional-derivative control of a solid-core magnetic bearing, ISA Transactions, 53(4), 1232-1242.
  19. [19]  Gao, F., Lee, X.J., Fei, F.X., Tong, H.Q., Deng, Y.F., and Zhao, H.L. (2014), Identification time-delayed fractional order chaos with functional extrema model via differential evolution, Expert Systems with Applications, 41(4), 1601-1608.
  20. [20]  Toledo-Hernandez, R., Rico-Ramirez, V., Iglesias-Silva, G.A., and Diwekar, U.M. (2014), A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemical Engineering Science, 117(27), 217-228.
  21. [21]  Sabatier, J., Merveillaut, M., Francisco, J.M., Guillemard, F. and Porcelatto, D. (2013), Fractional models for lithiumion batteries, European Control Conference (ECC), 3458-3463.
  22. [22]  Zhong, F., Li, H. and Zhong, Q. (2014), An approach for SOC estimation based on sliding mode observer and fractional order equivalent circuit model of lithium-ion batteries, IEEE International Conference on Mechatronics and Automation (ICMA), 1497-1503.
  23. [23]  Yuan, S.,Wu, H., Zhang, X. and Yin, C. (2013), Online Estimation of Electrochemical Impedance Spectra for Lithium- Ion Batteries via Discrete Fractional Order Model, Vehicle Power and Propulsion Conference (VPPC), 2013 IEEE, 224-229.
  24. [24]  Xu, J., Mi, C.C., Cao, B. and Cao, J. (2013), A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model, Journal of Power Sources, 233, 277-284.
  25. [25]  Smith, K.A., Rahn, C.D., andWang, C.Y. (2010),Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries, IEEE Transactions on Control Systems Technology, 18(3), 654-663.
  26. [26]  Korllrt, R.C. (1984), Application of frational calculus to the theory of viscoelasticity, Journal of Applied Mechanics, 51(2), 299-307.
  27. [27]  Arikoglu, A. (2014), A new fractional derivative model for linearly viscoelastic materials and parameter identification via genetic algorithms, Rheologica Acta, 53(3), 219-233.
  28. [28]  Metzler, R., Klafter J. and Sokolov I.M., (1998), Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended, Physical Review E, 58(2), 1621-1633.
  29. [29]  Ichise,M., Nagayanagi, Y. and Kojima, T. (1971),An analog simulation of non-integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 33(2), 253-265.
  30. [30]  Malti, R., Victor, S., and Oustaloup, A. (2008). Advances in system identification using fractional models, Journal of Computational and Nonlinear Dynamics, 3(2), 021401.
  31. [31]  Chetoui, M., Thomassin, M., Malti, R., Aoun, M., Najar, S., Abdelkrim, M.N., and Oustaloup, A. (2013), New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models, Computers Mathematics with Applications, 66(5), 860-872.
  32. [32]  Malti, R., Victor, S., Nicolas, O., and Oustaloup, A. (2007). System identification using fractional models: state of the art, in Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE September 4-7, Las Vegas, Nevada, USA.
  33. [33]  Ahmed, S., Huang, B. and Shah, S.L. (2006). Parameter and delay estimation of continuous-timemodels using a linear filter, Journal of Process Control, 16(4), 323-331.
  34. [34]  Cois, O., Oustaloup, A., Poinot, T. and Battaglia, J.L. (2001). Fractional state variable filter for system identification by fractional model, in Proceedings of the European Control Conference-ECC, Semin-rio de Vilar, Porto, Portugal, 2481-2486.
  35. [35]  Cois, O., Oustaloup, A., Battaglia, E. and Battaglia, J.L. (2000). Non integer model from model decomposition for time domain system identification, in Proceedings of the Symposium on System Identification, 989-994.
  36. [36]  Hartley, T.T. and Lorenzo, C.F. (2003). Fractional-order system identification based on continuous order-distributions, Signal Processing, 83(11), 2287-2300.
  37. [37]  Malti, R., Aoun, M., Oustaloup, A. (2004). Synthesis of fractional Kautz-like basis with two periodically repeating complex conjugate modes, in Proceedings of the 1st International Symposium on Control, Communications and Signal Processing, 835-839.
  38. [38]  Aoun, M., Malti, R., Levron, F. and Oustaloup, A. (2007). Synthesis of fractional Laguerre basis for system approximation, Automatica, 43(9), 1640-1648.
  39. [39]  Thomassin M. and Malti R. (2009), Subspace method for continuous-time fractional system idenfication, in Proceedings of the 15th IFAC Symposium on System Identincation, Sanit Malo: France. Malo:Franee.
  40. [40]  Li, W., Peng, C., and Wang, Y. (2011), Frequency domain subspace identification of commensurate fractional order input time delay systems, International Journal of Control, Automation, and Systems, 9(2), 310-316.
  41. [41]  Zhang, M. and Li, D.Z. (2012), Fractional system identification based on improved NLJ algorithm, in Proceedings of the 24th Control and Decision Conference (CCDC), 1057-1061.
  42. [42]  Janiczek, T. (2010), Generalization of modulating functions method in the fractional differential equations, Bulletin of the academy of Sciences, 58(4), 593-599.
  43. [43]  Li, Y.L. and Yu, S.L. (2007), Identification of non-integer order systems in frequency domain, Acta Automatica Sinica, 33(8), 882-884.
  44. [44]  Valério, D., Ortigueira, M.D., and da Costa, J.S. (2008), Identifying a transfer function from a frequency response, Journal of Computational and Nonlinear Dynamics, 3(2), 207-213.
  45. [45]  Vinagre, B.M., Feliú, V. and Feliú, J.J. (1998). Frequency domain identification of a flexible structure with piezoelectric actuators using irrational transfer function models. In Decision and Control, in Proceedings of the 37th IEEE Conference on Decision and Control, 2, 1278-1280 .
  46. [46]  Valério, D. and Tejado, I. (2015). Identifying a non-commensurable fractional transfer function from a frequency response, Signal Processing, 107(February), 254-264.
  47. [47]  Malti, R., Raïssi, T., Thomassin, M. and Khemane, F. (2010). Set membership parameter estimation of fractional models based on bounded frequency domain data, Communications in Nonlinear Science and Numerical Simulation, 15(4), 927-938.
  48. [48]  Enacheanu, O., Riu, D., Retière, N. and Enciu, P. (2006), Identification of fractional order models for electrical networks, in Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics, 5392-5396.
  49. [49]  Li, Z. and Chen, Y.Q. (2014), Identification of linear fractional order systems using the relay feedback approach, in Proceedings of the 2014 American Control Conference (ACC), 3704-3709.
  50. [50]  Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y. and Feliu, V. (2010), Fractional-order systems and controls fundamentals and applications, Springer-Verlag, London, 2010.
  51. [51]  Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego.
  52. [52]  Lorenzo, C.F. and Hartley, T.T. (2007), Initialization of fractional differential equations: background and theory, in Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 5, 1325-1333.
  53. [53]  Lorenzo, C.F. and Hartley, T.T. (2007), Initialization of fractional differential equations: theory and application, in Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 5, 1341-1347.
  54. [54]  Rossikhin, Yu.A., Shitikova, M.V. and Shcheglova, T.A. (2010), Analysis of free vibrations of a viscoelastic oscillator via the models involving several fractional parameters and relaxation/retardation times, Computers and Mathematics with Applications, 59(5), 1727-1744.
  55. [55]  Benchellal A., Poinot T. and Trigeassou J.C. (2007),Modelling and identification of diffusive systems using fractional models, In Advances in Fractional Calculus, Springer Netherlands, 213-225.
  56. [56]  Chua, L.O. (1971),Memristor-TheMissing Circuit Element, IEEE Transactions on Circuit Theory, 18(5), 507-519.
  57. [57]  Sabatier, J., Agrawal, O.P. and Tenreiro Machado, J.A. (2007), Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Springer-Verlag, Dordrecht.
  58. [58]  Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006), Theory and applications of fractional differential equations, Elsevier Science, Amsterdam, Boston.
  59. [59]  Podlubny, I. (2002), Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5(4), 367-386.
  60. [60]  Podlubny, I. and Heymans, N. (2006), Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta, 45(5), 765-772.
  61. [61]  Li, Y., Chen, Y.Q. and Ahn, H.S. (2014), Fractional order iterative learning control for fractional order system with unknown initialization, in Proceedings of the 2014 American Control Conference (ACC), 5712-5717.
  62. [62]  Gambone, T., Hartley, T.T., Lorenzo, C.F., Adams, J.L. and Veillette, R.J. (2011), An experimental validation of the time-varying initialization response in fractional-order systems, in Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 115-122.
  63. [63]  Chen, Y.Q., Wen, C.Y., Xu, J.X. and Sun, M.X., (1998), High-order Iterative Learning Identification of Projectile’s Aerodynamic Drag Coefficient Curve from Radar Measured Velocity Data, IEEE Transactions on Control Systems Technology, 6(4), 563-570.
  64. [64]  Li, Y., Chen, Y.Q. and Ahn, H.S. (2013), On P-type fractional order iterative learning identification, in Proceedings of the 13th International Conference on Control, Automation and Systems (ICCAS 2013), 20-23.
  65. [65]  Li, Y., Xue, D.Y. and Chen, Y.Q. (2010), Sensitivity function of LTI fractional order dynamic systems with respect to the orders, in Proceedings of the 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA, 6692-6697.
  66. [66]  Li, Y., Chen, Y.Q. and Ahn, H.S. (2011), Fractional-order iterative learning control for fractional-order linear systems, Asian Journal of Control, 13(1), 54-63.
  67. [67]  Chen, Y.Q. and Moore, K.L. (2011), On Dα -type iterative learning control, in Proceedings of IEEE Conference on Decision and Control, IEEE, New York, 5, 4451-4456.
  68. [68]  Li, Y., Chen, Y.Q. and Ahn, H.S. (2013), On P-type fractional order iterative learning identification, in Proceedings of the 13th International Conference on Control, Automation and Systems (ICCAS), 219-225.
  69. [69]  Li Y., Chen Y.Q., Ahn H.S. (2011), A generalized fractional-order iterative learning control, in Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 5356-5361.
  70. [70]  Li Y., Chen Y.Q., Ahn H.S., Tian G.H. (2013), A survey on fractional-order iterative learning control, Journal of Optimization Theory and Applications, 156(1), 127-140.