Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Solvability Relations For Some Diffusion Equations With Convection Terms

Discontinuity, Nonlinearity, and Complexity 3(4) (2014) 457--465 | DOI:10.5890/DNC.2014.12.008

Vitali Vougalter$^{1}$; Vitaly Volpert$^{2}$

$^{1}$ Department ofMathematics and Applied Mathematics, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa

$^{2}$ Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France

Download Full Text PDF

 

Abstract

Linear second order elliptic equations containing the sum of the two Laplace operators with convection terms or a free Laplacian and a Laplacian with drift are considered in Rd. The corresponding operator L may be non Fredholm, such that solvability conditions for the equation Lu = f are unknown. We obtain solvability conditions in H2 (Rd ) for the non selfadjoint problem via relating it to a self-adjoint Schrödinger type operator, for which solvability relations are derived in our preceding work [16].

References

  1. [1]  Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B. (1987), Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin.
  2. [2]  Ducrot, A., Marion, M., and Volpert, V. (2005), Systemes de réaction-diffusion sans propriété de Fredholm, CRAS, 340(9), 659-664.
  3. [3]  Ducrot, A., Marion, M., and Volpert, V. (2008), Reaction-diffusion problems with non Fredholm operators, Advances Diff. Equations, 13(11-12), 1151-1192.
  4. [4]  Ducrot, A., Marion, M., and Volpert,V. (2009), Reaction-diffusion waves (with the Lewis number different from 1), Mathematics and Mathematical Modelling, Publibook, Paris.
  5. [5]  Hamel, F., Berestycki, H., and Nadirashvili, N. (2005), Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Communications in Mathematical Physics, 253, 451-480.
  6. [6]  Hamel, F., Nadirashvili, N., and Russ, E. (2005), An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift, C. R. Math. Acad. Sci. Paris, 340(5), 347-352.
  7. [7]  Jonsson, B.L.G., Merkli, M., Sigal, I.M., and Ting, F. Applied Analysis. In preparation.
  8. [8]  Kato, T.(1965/1966), Wave operators and similarity for some non-selfadjoint operators, Mathematische Annalen, 162, 258-279.
  9. [9]  Lieb, E. and Loss, M.(1997), Analysis. Graduate Studies in Mathematics, 14, American Mathematical Society, Providence.
  10. [10]  Reed, M. and Simon, B. (1979), Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press.
  11. [11]  Rodnianski, I. and Schlag, W.(2004), Time decay for solutions of Schrödinger equations with rough and timedependent potentials, Inventiones Mathematicae, 155(3), 451-513.
  12. [12]  Texier-Picard, R. and Volpert, V.(2003), Reaction-diffusion-convection problems in unbounded cylinders, Revista Matematica Complutense, 16(1), 233-276.
  13. [13]  Volpert, V. (2011), Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains, Birkhäuser.
  14. [14]  Volpert, V. and Volpert, A. (1998), Convective instability of reaction fronts. Linear stability analysis, European Journal of Applied Mathematics, 9 507-525.
  15. [15]  Vougalter, V. and Volpert, V. (2011), Solvability conditions for some non Fredholm operators, Proceedings of the Edinburgh Mathematical Society(2), 54(1), 249-271.
  16. [16]  Vougalter, V. and Volpert, V. (2010),On the solvability conditions for some non Fredholm operators, International Journal of Pure and Applied Mathematics, 60(2), 169-191.
  17. [17]  Vougalter, V. and Volpert, V. (2012), On the solvability conditions for the diffusion equation with convection terms, Communications on Pure and Applied Analysis, 11(1), 365-373.