Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Filaments-nets Structure of the Phase Space of Coin Tossing Mechanism for Sensitivity and Complexity

Discontinuity, Nonlinearity, and Complexity 3(4) (2014) 389--412 | DOI:10.5890/DNC.2014.12.003

Zengyuan Yue

Institute of Training Science and Sport Informatics, German Sport University Cologne, 50933 Cologne, Germany

Download Full Text PDF



Detailed analysis of trajectories reveals a filaments-nets structure of the phase space of coin tossing, leading to a simple and unified explanation for the extremely sensitive dependence of the outcome, head or tail, on the initial state, for the extremely complex geometry of the cross sections of basins of attraction for heads and tails, and for the big difference between the transitional region and the “completely random region”. A “GDGC” (Great Differentiation & Great Combination) condition is proposed for the stability of statistical regularity, which can also be summarized by the following “Compensation Principle”: The more sensitive, i.e. the more unstable, the deterministic process is, the more stable, i.e. the more insensitive, the associated statistical regularity would be.


  1. [1]  Poincaré, H. (1896), Calcul des probalite's, George Carre, Paris.
  2. [2]  Poincaré, H. (1914), Le Hasard, Science et Méthode, p.65, Flammarian, Paris.
  3. [3]  Prigogine, I. and Stengers, I. (1984), Order out of Chaos , p.271, Bantam Books, USA.
  4. [4]  Hopf, E. (1934), On causality, statistics and probability, Journal of Mathematical Physics, 13, 51-102.
  5. [5]  Hopf, E. (1936), Über die Bedeutung der willkürlichen Funktionen für die Wahrscheinlichkeitstheorie, Jahresbericht Deutsche Math. 46, 179-195.
  6. [6]  Hopf, E. (1937),Ein Verteilungsproblem bei dissipativen dynamischen System, Mathematische Annalen , 114, 161- 186.
  7. [7]  Yue, Z. and Zhang, B. (1985), On the sensitive dynamical system and the transition from the apparently deterministic process to the completely random process, Applied Mathematics and Mechanics , 6, 193-211.
  8. [8]  Vulovic, V.Z. and Prange, R.E. (1986),Randomness of a true coin toss, Physical Review A, 33, 576-582.
  9. [9]  Keller, J.B. (1986), The probability of heads, The American Mathematical Monthly , 93, 191-197.
  10. [10]  Kolota, G. (1986),What does it mean to be random? Science, 231,1068-1070.
  11. [11]  Murray, D.B. and Teare, S.W. (1993),Probability of a tossed coin landing on edge, Physical Review E, 48, 2547-2552.
  12. [12]  Mahadevan, L. and Yong, E.H. (2011), Probability, physics, and the coin toss, Physics Today, July, 66-67.
  13. [13]  Yong, E.H. and Mahadevan, L. (2011), Probability, geometry, and dynamics in the toss of a thick coin, American Journal of Physics, 79, 1195-1201.
  14. [14]  Diaconis, P., Holmes, S. and Montgomery, R. (2007), Dynamical bias in the coin toss, SIAM Review, 49, 211-235.
  15. [15]  Strzalko, J., Grabski, J., Stefanski, A. Perlikowski, P. and Kapitaniak, T. (2008), Dynamics of coin tossing is predictable, Physics Report, 469, 59-92.
  16. [16]  Mizuguchi, T. and Suwashita,M. (2006), Dymamics of coin tossing, Progress of Theoretical Physics Supplement, 161, 274-277.