Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA


Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania


Extended Mixed AKNS-Lund-Regge Model and Its Self-similarity Reduction

Discontinuity, Nonlinearity, and Complexity 3(2) (2014) 161--168 | DOI:10.5890/DNC.2014.06.005

D.V. Ruy$^{1}$; G.R. de Melo$^{2}$

$^{1}$ Instituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco II, Sã Paulo, 01140-070, Brazil

$^{2}$ Núcleo Interdisciplinar em Ciência, Engenharia e Tecnologia, Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, Campus Universitário de Cruz das Almas Cruz das Almas, 44380-000, Bahia, Brazil

Download Full Text PDF



We discuss the relation between the self-similarity reduction of the generalized mixed mKdV-sinh-Gordon model and the fourth-order equation obtained by Kudryashov inJ. Phys. A: Math. Theor.35(2002) 93-99. Also, it is shown two particular solutions for this equation. Then, we extend the mixed AKNS-Lund-Regge model and study its self-similarity reduction. We obtain thefifth Painlevé equation as a particular case of this reduction and a fourth-order second-degree equation otherwise. The relation between a integrable model and a fourth-order second-degree equation is interesting because the general solution of this equation must have the Painlevé property due the Ablowitz, Ramani and Segur conjecture.


D. V. Ruy thanks FAPESP (2010/18110-9) for financial support. G. R. de Melo is grateful to the Instituto de Física Teórica for the hospitality. The authors are thankful to A. H. Zimerman and H. Aratyn for discussions.


  1. [1]  Umemura, H. (1998), Painlevé Equations and Classical Functions, Sugaku Expositions, 11, 77-100.
  2. [2]  Ablowitz, M.J. and Segur, H. (1977), Asymptotic solutions of the Korteweg-deVries equation, Studies in Applied Mathematics, 57, 13-44.
  3. [3]  Ablowitz,M.J., Ramani, A., and Segur, H. (1978), Nonlinear Evolution Equations and Ordinary Differential Equations of Painlevé Type, Letters Nuovo Cimento, 23, 333-338.
  4. [4]  Cosgrove, C.M. (2000), Higher-Order Painlevé Equation in the Polynomial Class I. Bureau Symbol P2, Studies in Applied Mathematics, 104, 1-65.
  5. [5]  Cosgrove, C. M. (2006), Higher-order Painlevé equations in the polynomial class II. Bureau symbol P1, Studies in Applied Mathematics, 106, 321-413.
  6. [6]  Gordoa, P.R., Joshi, N., and Pickering, A. (2006), Second and fourth Painlevé hierarchies and Jimbo-Miwa linear problems, Journal of Mathematical Physics, 47, 073504.
  7. [7]  Kudryashov, N.A. (1997), The first and second Painlevé equations of higher order and some relations between them, Physics Letters A, 224, 353-360.
  8. [8]  Kudryashov, N.A. (1999),Two hierarchies of ordinary differential equations and their properties, Physics Letters A, 252, 173-179.
  9. [9]  Kudryashov, N.A. (2002), One generalization of the second Painlevé hierarchy, Journal of Physics A: Mathematical and Theoretical, 35, 93-99.
  10. [10]  Mugãn, U. and Jrad, F. (1999), Painlevé test and the first Painlevé hierarchy, Journal of Physics A: Mathematical and General, 32. 7933-7952.
  11. [11]  Mugãn, U. and Jrad, F. (2002), Painlevé Test and Higher Order Differential Equation, Journal of Nonlinear Mathematical Physics, 9, 282-310.
  12. [12]  Sakka, A.H. (2009), Bäcklund Transformations for First and Second Painlevé Hierarchies, SIGMA, 5 11 pp.
  13. [13]  Sakka, A. H. (2009), Linear problems and hierarchies of Painlevé equations, Journal of Physics A: Mathematical and Theoretical, 42, 025210.
  14. [14]  Konno, K. , Kameyama,W. and Sanuki, H. (1974), Effect of Weak Dislocation Potential on NonlinearWave Propagation in Anharmonic Crystal, Journal of the Physical Society of Japan, 37, 171-176.
  15. [15]  Gomes, J. F., Melo, G. R., Ymai, L. H. and Zimerman, A. H. (2010), Nonautonomous mixed mKdV-sinh-Gordon hierarchy, ournal of Physics A: Mathematical and Theoretical, 43, 395203.
  16. [16]  Gomes, J. F., Melo, G. R. and Zimerman, A. H. (2009), A Class of Mixed Integrable Models, ournal of Physics A: Mathematical and Theoretical, 42, 275208.
  17. [17]  Lund, F. and Regge, T. (1976), Unified approach to strings and vortices with soliton solutions, Physical Review D, 14, 1524-1535.
  18. [18]  Pohlmeyer, K. (1976), Integrable Hamiltonian Systems and Interactions through Quadratic Constraints, Communications in Mathematical Physics, 46, 207-221.