Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Bifurcation Trees of Period-m Motions to Chaos in a Time-Delayed, Quadratic Nonlinear Oscillator under a Periodic Excitation

Discontinuity, Nonlinearity, and Complexity 3(1) (2014) 87--107 | DOI:10.5890/DNC.2014.03.007

Albert C. J. Luo; Hanxiang Jin

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL62026-1805, USA

Download Full Text PDF

 

Abstract

In this paper, analytical solutions of periodic motions in a periodi- cally excited, time-delayed, quadratic nonlinear oscillator are obtained through the Fourier series, and the stability and bifurcation of such pe- riodic motions are discussed by eigenvalue analysis. The analytical bifurcation tree of period-1 motion to chaos in such a time-delayed, quadratic oscillator is presented through period-1 to period-8 motion. Numerical illustrations of stable and unstable periodic motions are given by numerical and analytical solutions. Compared to dynami- cal systems without time-delay, the time-delayed dynamical systems possess different periodic motions and the bifurcation trees of periodic motions to chaos are also distinguishing.

References

  1. [1]  Lagrange, J.L. (1788), Mecanique Analytique (2 vol.) (edition Albert Balnchard Paris, 1965).
  2. [2]  Poincare, H., (1899), Methodes Nouvelles de la Mecanique Celeste, Vol.3, Gauthier-Villars, Paris.
  3. [3]  van der Pol, B.(1920), A theory of the amplitude of free and forced triode vibrations, Radio Review, 1, 701-710, 754-762.
  4. [4]  Fatou, P.(1928), Sur le mouvement d'un systeme soumis 'a des forces a courte periode, Bull. Soc. Math. , 56, 98-139
  5. [5]  Krylov, N.M. and Bogolyubov,N.N. (1935),Methodes approchees de la mecanique non-lineaire dans leurs application a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s'y rapportant, (Kiev, Academie des Sciences d'Ukraine). (in French).
  6. [6]  Bogoliubov,N.N. andMitropolsky, Yu.A. (1961), Asymptotic Methods in the Theory of Nonlinear Oscillations, Gorden and Breach, New York.
  7. [7]  Hayashi, G.(1964), Nonlinear oscillations in Physical Systems, McGraw-Hill Book Company, New York.
  8. [8]  Nayfeh, A.H.(1973), Perturbation Methods, John Wiley, New York.
  9. [9]  Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillation, JohnWiley, New York.
  10. [10]  Coppola, V.T. and Rand, R.H.(1990), Averaging using elliptic functions: Approximation of limit cycle, Acta Mechanica, 81, 125-142.
  11. [11]  Luo, A.C.J.(2012), Continuous Dynamical Systems, HEP-L&HScientific, Beijing & Glen Carbon.
  12. [12]  Luo, A.C.J. and Huang, J.Z.(2011), Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance, Journal of Vibration and Control, in press.
  13. [13]  Luo, A.C.J. and Huang, J.Z.(2012), Analytical dynamics of period-m flows and chaos in nonlinear systems, International Journal of Bifurcation and Chaos, 22, Article No. 1250093 (29 pages).
  14. [14]  Tlusty, J. (2000), Manufacturing Processes and Equipment, Prentice Hall, New Jersey.
  15. [15]  Hu, H.Y. and Wang, Z.H. (2002), Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer, Berlin.
  16. [16]  Stepan, G. (1989), Retarded Dynamical Systems, Longman, Harlow.
  17. [17]  Sun, J.Q. (2009), A method of continuous time approximation of delayed dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 14(4), 998-1007.
  18. [18]  Insperger, T. and Stepan, G. (2011), Semi-Discretization for Time-delay Systems: Stability and Engineering Applications, Springer, New York.
  19. [19]  Hu, H.Y., Dowell, E.H., and Virgin, L.N. (1998), Resonance of harmonically forced Duffing oscillator with time-delay state feedback, Nonlinear Dynamics, 15(4), 311-327.
  20. [20]  Wang, H. and Hu, H.Y., (2006), Remarks on the perturbation methods in solving the second order delay differential equations, Nonlinear Dynamics, 33, 379-398.
  21. [21]  MacDonald, N. (1995), Harmonic balance in delay-differential equations, Journal of Sounds and Vibration, 186 (4), 649-656.
  22. [22]  Liu, L. and Kalmar-Nagy, T. (2010), High-dimensional harmonic balance analysis for second-order delay-differential equations, Journal of Vibration and Control, 16(7-8), 1189-1208.
  23. [23]  Leung, A.Y.T. and Guo, Z. (2012), Bifurcation of the periodic motions in nonlinear delayed oscillators, Journal of Vibration and Control, DOI: 10.1177/1077546312464988.
  24. [24]  Luo, A.C.J. (2013), Analytical solutions of periodic motions in dynamical systems with/without time-delay, International Journal of Dynamics and Control, 1,330-359