Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Parameter Characteristics of Projective Synchronization of two Gyroscope Systems with Different Dynamical Behaviors

Discontinuity, Nonlinearity, and Complexity 2(2) (2013) 167--182 | DOI:10.5890/DNC.2013.04.006

Fuhong Min$^{1}$; Albert C.J. Luo$^{2}$

$^{1}$ School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China

$^{2}$ Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL62026-1805, USA

Download Full Text PDF

 

Abstract

In this paper, parameter characteristics of the projective synchronization for two gyroscopes with different dynamical behaviors are investigated. The projective synchronization conditions are presented from the theory of discontinuous dynamical systems. From such synchronization conditions, the parameter characteristics for partial and full projective synchronizations for two gyroscope systems are studied. The full projective synchronization can be achieved exactly in finite time instead of asymptotic synchronization in the traditional projective synchronization. The scaling factors in such synchronization are observed through numerical simulations.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No.51075275), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 08kJB510006), and Six Categories of Summit Talents of Jiangsu Province of China, and the Ministry of Education of Oversea Returnees Start-up Research Fund.

References

  1. [1]  Ott, E., Grebogi, C., and Yorke, J.A. (1990), Controlling chaos, Physical Review Letters, 64(8), 1196-1199.
  2. [2]  Rulkov, N.F., MSushchik, .M., Tsimring, L.S., and Abarbanel, H.D. (1995), Generalized synchronization of chaos in directionally coupled chaotic systems, Physical Review E, 50, 1642-1644.
  3. [3]  Maninieri, R. and Rehacek, J., (1999), Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82, 3042-3045.
  4. [4]  Li, G.H. (2007), Modified projective synchronization of chaotic system, Chaos, Solitons and Fractals, 32, 1786- 1790.
  5. [5]  Li, R.H., Xu, W., and Li, S.(2007), Adaptive generalized projective synchronization in different chaotic systems based on parameter identification, Physics Letters A, 367, 199-206.
  6. [6]  Min, F.H. and Wang, Z.Q. (2008), Generalized projective synchronization and tracking control of complex dynamous systems, Acta Physics Sinica, 57, 31-36.
  7. [7]  Hu, M.F., Yang, Y.Q., Xu, Z.Y., and Guo, L.X. (2008), Hybrid projective synchronization in a chaotic complex nonlinear system, Mathematics and Computers in Simulation, 79, 449-457.
  8. [8]  Hung, M.L., Yan, J.J. a, nd Liao, T.L. (2008), Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input, Chaos, Solitons and Fractals, 35, 181-187.
  9. [9]  Lee, T.H. and Park, J.H. (2009), Adaptive function projective lag synchronization of hyperchaotic Rössler System, Chinese Physics Letters, 26, Article No.:090507.
  10. [10]  Wang, X.Y. and Fan, B(2012), Generalized projective synchronization of a class of hyperchaotica systems based on state observer, Communications in Nonlinear Science and Numerical Simulation, 17, 953-963.
  11. [11]  Yu, Y.G. and Li, H. X. (2011), Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design, Nonlinear Analysis: Real World Applications, 12, 388-393.
  12. [12]  Wu, X. J.,Wang, H. and Lu, H. T. (2011), Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Analysis: Real World Applications, 12, 1288-1299.
  13. [13]  Chen, H.K.(2002), Chaos and chaos synchronization of symmetric gyro with linear-plus-cubic damping, Journal of Sound and Vibration, 255, 719-740.
  14. [14]  Dooren, R.V(2003), Comments on chaos and chaos synchronization of symmetric gyro with linear-plus-cubic damping, Journal of Sound and Vibration, 268, 632-635.
  15. [15]  Lei, Y.M., Xu, W. and Zheng, H.C. (2005), Synchronization of two chaotic nonlinear gyros using active control, Physics Letters A, 343, 153-158.
  16. [16]  Yan, J.J., Hung, M. L. and Liao, T.L. (2006), Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters, Journal of Sound and Vibration, 298, 298-306.
  17. [17]  Yau, H.T. (2007), Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping, Chaos, Solitons and Fractals, 34, 1357-1365.
  18. [18]  Hung, M.T., Yan, J.J. and Liao, T.L.(2008), Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input, Chaos, Solitons and Fractals, 35, 181-187.
  19. [19]  Salarieh, H. and Alasty, A. (2008), Chaos synchronization of nonlinear gyros in presence of stochastic excitation via sliding mode control, Journal of Sound and Vibration, 313, 760-771.
  20. [20]  Roopaei, M., Jahromi, M.Z., John, R. and Lin, T.C. (2010), Unknown nonlinear chaotic gyros synchronization using adaptive fuzzy sliding mode control with unknown dead-zone input, Communications in Nonlinear Science and Numerical Simulation, 15, 2536-2545.
  21. [21]  Min, F.H. and Luo, A.C.J.(2012), On parameter characteristics of chaotic synchronization in two nonlinear gyroscope systems, Nonlinear Dynamics, 69, 1203-1223.
  22. [22]  F.H. Min (2011), Generalized projective synchronization between two chaotic gyros with nonlinear damping, Chinese Physics B, 20, Article no.:110958.
  23. [23]  Min, F.H. and Luo, A.C.J. (2012), A generalized projective synchronization of two different gyroscopes, the Proceedings of IEEE 4th International Conference on Nonlinear Science and Complexity, pp.103-108. NSC2012- IEEE 4th InternationalConference on Nonlinear Science and Complexity, August 6-11, 2012, Budapest, Hungary.
  24. [24]  Luo, A.C.J. (2008), A theory for flow switchability in discontinuous dynamical systems, Nonlinear Analysis: Hybrid Systems, 3, 1030-1061.
  25. [25]  Luo, A.C.J.(2009), A theory for synchronization of dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 14, 1901-1951.
  26. [26]  Luo, A.C.J. (2009), Discontinuous Dynamical Systems on Time-varying Domains, HEP-Springer, Beijing- Dordrecht.