Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Optimal Control and Stability Analysis of Malaria Disease: A Model Based Approach

Journal of Applied Nonlinear Dynamics 10(4) (2021) 775--790 | DOI:10.5890/JAND.2021.12.014

Manotosh Mandal$^{1,2}$, Soovoojeet Jana$^{3}$ , U. K. Pahari$^{4}$, T. K. Kar$^{2}$

$^{1}$ Dept. of Mathematics, Tamralipta Mahavidyalaya, Tamluk, Purba Medinipur, West Bengal, India

$^{2}$ Dept. of Mathematics, IIEST, Shibpur, Howrah, West Bengal, India

$^{3}$ Dept. of Mathematics, Ramsaday College, Amt-7111401, Howrah, West Bengal, India

$^{4}$ Department of Mathematics, Netaji Nagar Day College, Kolkata -- 700092

Download Full Text PDF



In this paper we have proposed a three dimensional mathematical model on malaria disease by considering two distinct classes namely susceptible and infected human population and infected mosquito population. Basic reproductive number of the system has been obtained and its relation regarding the behavior of the system has been established. Two control parameters, namely treatment control on infected human population and insecticide control on mosquito populations are applied in the present system. We formulate and solve the optimal control problem considering treatment and insecticide as the control variables. All the theoretical results are verified by some computer simulation works.


The research work of Dr. Soovoojeet Jana is financially supported by Department of Science \& Technology and Biotechnology, Government of West Bengal (Memo no. 201 (Sanc)/S&T/P/S T/16G-12/2018 dated 19/02/2019). Further, the authors are very much grateful to the anonymous reviewers and Dr. Shanmuganathan Rajasekar, Associate Editor of Journal of Applied Nonlinear Dynamics, for their constructive comments and helpful suggestions, which have helped us significant improvement of the article.


  1. [1]  Amaku, M., Coutinho, F.A.B., and Massad, E. (2011), Why dengue and yellow fever coexist in some areas of the world and not in others? Biosystems, 106, 111-120.
  2. [2]  Anderson, R.H. and May, R.M. (1991), Infectious Disease of Humans, Oxford University Press, Oxford, U.K.
  3. [3]  Bailey, N.T.J. (1975), The Mathematical Theory of Infectious Disease and its Applications, Charles Griffin and Company, London.
  4. [4]  Bartl, M., Li, P., and Schuster, S. (2010), Modelling the optimal timing in metabolic pathway activation- Use of Pontryagins Maximum Principle and role of the Golden section, Biosystems, 101(1), 67-77.
  5. [5]  Bernoulli, D. (1766), Essai dune nouvelle analyse de la mortalite causee par la petite verole, et des avantages de linoculation pour la prevenir, Histoire lAcad. Roy.Sci. (Paris) avec Mem. Math. Phys. Mem., 1-45.
  6. [6]  Birkoff, G. and Rota, G.C. (1982), Ordinary Differential Equations, Ginn, Boston.
  7. [7]  Buonomo, B., dOnofrio, A., and Lacitignola, D. (2008), Global stability of an SIR epidemic model with information dependent vaccination, Math. Biosci., 216, 9-16.
  8. [8]  Cai, L., Guo, S., Li, X., and Ghosh, M. (2009), Global dynamics of a dengue epidemic mathematical model, Chaos Soliton. Fract., 42, 2297-2304.
  9. [9]  Daley, D.J. and Gani, J. (1999), Epidemic Modelling. Cambridge University Press, Cambridge, U.K
  10. [10]  Eckalbar, J.C. and Eckalbar, W.L. (2011), Dynamics of an epidemic model with quadratic treatment, Nonlinear Analysis: Real World Applications, 12(1), 320-332.
  11. [11]  Hethcote, H.W. (2000), The mathematics of infectious diseases, SIAM Review, 42, 599-653.
  12. [12]  Joshi, H.R. (2002), Optimal control of an HIV immunology model, Optim. Con. Appl. Methods, 23, 199-213.
  13. [13]  Jung, E., Lenhart, S., and Feng, Z. (2002), Optimal control of treatments in a two strain tuberculosis model, Discrete Contin. Dyn. Syst. Ser. B, 2(4), 473-482.
  14. [14]  Kar, T.K. and Jana, S. (2013a), A theoretical study on mathematical modelling of an infectious disease with application of optimal control, BioSystems, 111, 37- 50.
  15. [15]  Ross, R. (1915), Some a priori pathometric equations, Br. Med. J., 1, 546-447.
  16. [16]  Yeargers, E.K., Shonkwiler, R.W., and Herod, J.V. (2011), An Introduction to the Mathematics of Biology: with Computer Algebra Models. Birkhauser.
  17. [17]  Marsh, K. (1998), Malaria disaster in Africa, Lancet, 352, 924-925.
  18. [18]  Sachs, J. (2002), A new infected global effort to control malaria, Science, 298, 122-124.
  19. [19]  Mondal, S., Sarkar, R.R., and Sinha, S. (2011), Mathematical models of malaria --- a review, 10, 202-220.
  20. [20]  Kar, T.K. and Jana, S. (2013), Application of three controls optimally in a vector borne disease-a mathematical study, Communications in Nonlinear Science and Numerical Simulation, 18, 2868-2884.
  21. [21]  Makinde, O.D. and Okosun, K.O. (2011), Impact of chemo-therapy on optimal control of malaria disease with infected immigrants, BioSystems, 104, 32-41.
  22. [22]  Okosun, K.O., Ouifki, R., and Marcus, N. (2011), Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, BioSystems, 106, 136-145.
  23. [23]  Nakul, C., Hyman, J.M., and Cushing, J.M. (2008), Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology, 70, 1272-1296.
  24. [24]  Lukes, D.L. (1982), Differential Equations: Classical to Controlled. In: Mathematics in Science and Engineering, vol. 162. Academic Press, New York.
  25. [25]  Zaman, G., Kang, Y.H., and Jung, I.H. (2008), Stability analysis and optimal vaccination of an SIR epidemic model, BioSystems, 93, 240-249.
  26. [26]  Kelatlhegile, G.R. and Kgosimore M. (2015), Bifurcation analysis of vertical transmission model with preventive strategy, Journal of the Egyptian Mathematical Society.
  27. [27]  Kermack, W.O. and McKendrick, A.G. (1927), Contributions to the mathematical theory of epidemics-I, Proceedings of the Royal Society, 115A, 700-721.
  28. [28]  Kermack, W.O. and McKendrick, A.G. (1932), Contributions to the mathematical theory of epidemics-II-the problem of endemicicty, Proceedings of the Royal Society, 138, 55-83.
  29. [29]  Jana, S., Nandi, S.K., and Kar, T.K. (2016), Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment, Acta biotheoretica, 64, 65-84.
  30. [30]  Kar, T.K., Nandi, S.K., Jana, S., and Mandal, M. (2019), Stability and bifurcation analysis of an epidemic model with the effect of media, Chaos, Solitons {$\&$ Fractals}, 120, 188-199.
  31. [31]  Nandi, S.K., Jana, S., Mandal, M., and Kar, T.K. (2018), Mathematical Analysis of an Epidemic System in the Presence of Optimal Control and Population Dispersal, Biophysical Reviews and Letters, 13(1), 1-17.
  32. [32]  Nandi, S.K., Jana, S., Mandal, M., and Kar, T.K. (2019), Complex Dynamics and Optimal Treatment of an Epidemic Model with Two Infectious Diseases, Int. J. Appl. Comput. Math, 5(29), DOI: {}.
  33. [33]  Mandal, M., Jana, S., Nandi, S.K., Khatua, A., Adak, S., and Kar, T.K. (2020), A model based study on the dynamics of COVID-19: Prediction and control, Chaos, Solitons and Fractals, 136, 109889.
  34. [34]  Abu Arqub, O. (2019), Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis, Fundamenta Informaticae, 166(2), 111-137.
  35. [35]  Abu Arqub, O. (2018), Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm, Calcolo, 55, 31.
  36. [36]  Abu Arqub, O. and Al-Smadi, M. (2020), Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions, Soft Comput , {}.
  37. [37]  Abu Arqub, O. and Shawagfeh, N. (2019), Application of reproducing kernel algorithm for solving dirichlet time-fractional diffusion-gordon types equations in porous media, 22, 411-434.
  38. [38]  Nandi, S.K., Jana, S., Mandal, M., and Kar, T.K. (2019), Complex Dynamics and Optimal Treatment of an Epidemic Model with Two Infectious Diseases, Int. J. Appl. Comput. Math, 5, 29.