Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Chaotic Dynamics of Colpitts Oscillator Under Control of MEMS Feedback

Journal of Applied Nonlinear Dynamics 6(3) (2017) 315--332 | DOI:10.5890/JAND.2017.09.001

Saumitra Mishra; R. D. S. Yadava

Sensors & Signal Processing Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India

Download Full Text PDF



The nonlinear dynamics of Colpitts oscillator under control of MEMS varactor in feedback connectivity has been analyzed with objectives for generation and control of high frequency chaotic signals. The feedback signal derived from the capacitive divider in the standard Colpitts oscillator is modified by the MEMS varactor response mirrored by a voltage-controlled current multiplier. The latter implements MEMS capacitance multiplication and serves as a control parameter. The effects of voltage nonlinearity of the MEMS capacitance and the capacitance multiplication factor (α) have been analyzed by employing Lyapunov exponent, bifurcation diagram, phase portrait and Fourier transform methods. The modified feedback network facilitates high frequency chaos generation due to frequency doubling and high pass filtering effects of the MEMS capacitance. The latter emphasizes high frequency generation and attenuates lower frequencies. The variation of capacitance multiplication factor allows systematic changes in the qualitative nature of oscillator dynamics from a stable low frequency noisy state to Hopf bifurcation to period doubling/ tripling to chaos generation. The analysis suggests new MEMS based tuning and control of chaotic Colpitts oscillations.


The author Saumitra Mishra thanks University Grants Commission, New Delhi for providing UGC fellowship. The authors would like to thank Mr. T. Sonamani Singh and Mr. Anurag Gupta for their help and support. Special thanks are due to Prof. Arvind. K. Mishra for his valuable suggestions.


  1. [1]  Razavi, B. (1998), RF Microelectronics, Prentice-Hall, Upper Saddle River, 206-246.
  2. [2]  Hegazi, E., Rael, J., and Abidi, A. (2005), The Designer’s Guide to High-Purity Oscillators, Kluwer Academic, Boston, 67-81.
  3. [3]  Andreani, P., Wang, X., Vandi, L., and Fard, A. (2005), A study of phase noise in Colpitts and LC-tank CMOS oscillators, IEEE J. Solid State Circuts, 40(5), 1107-1118.
  4. [4]  Fard, A. and Andreani, P. (2007), An analysis of 1/f2 phase noise in bipolar Colpitts oscillators (with a digression on bipolar differential-pair LC oscillators), IEEE J. Solid State Circuits, 42(2), 374-384.
  5. [5]  Kazimierczuk, M. K. and Murthy-Bellur, D. (2011), Loop gain of the common-gate Colpitts oscillator, IET Circuits Devices Syst., 5(4), 275-284.
  6. [6]  Chlis, I., Pepe, D., and Zito., D. (2015), Analyses and techniques for phase noise reduction in CMOS Colpitts oscillator topology, Int. J. Circ. Theor. Appl. doi: 10.1002/cta.2097
  7. [7]  Kennedy, M. (1994), Chaos in the Colpitts oscillator, IEEE Trans. Circuits and Systems-I, 41(11), 771-774.
  8. [8]  Maggio, G. M., Feo, O. D., and Kennedy, M. P. (1999), Nonlinear analysis of the Colpitts oscillator and applications to design, IEEE Trans. Circuits Systems-I, 46(9), 1118-1130.
  9. [9]  Feo, O. D., Maggio, G. M., and Kennedy, M. P. (2000), The Colpitts oscillator: Families of periodic solutions and their bifurcations, Int. J. Bifurcation and Chaos , 10(5), 935-958.
  10. [10]  Shi, Z. G. and Ran, L. X. (2004), Design of chaotic Colpitts oscillator with prescribed frequency distribution. Int. J. Nonlinear Sci. & Num. Simulation, 5(1), 89-94.
  11. [11]  Mykolaitis, G., Tamaševičus, A., and Bumelienė, S. (2004), Experimental demonstration of chaos from Colpitts oscillator in VHF and UHF ranges, Electron. Lett., 40(2), 91-92.
  12. [12]  Tamaševičus, A., Mykolaitis, G., Bumelienė, S., Baziliauskas, A., Krivickas, R., and Lindberg, E. (2006), Chaotic Colpitts oscillator for the ultrahigh frequency range, Nonlinear Dyn., 46(1), 159-165.
  13. [13]  Tamaševičus, A., Mykolaitis, G., Bumelienė, S., Čnys, A., Anagnostopoulos, A. N., and Lindberg, E. (2001), Two-stage chaotic Colpitts oscillator, Electron. Lett., 37(9), 549-551.
  14. [14]  Tamba, V. K., Fotsin, H. B., Kengne, J., Tagne, F. K., and Talla, P. K. (2014), Complex dynamical behavior of a two-stage Colpitts oscillator with magnetically coupled inductors, Journal of Chaos, Article ID: 945658.
  15. [15]  Tamaševičus, A., Mykolaitis, G., and Bumelienė, S. (2004), Improved chaotic Colpitts oscillator for ultrahigh frequencies, Electron. Lett., 40(25), 1569-1570.
  16. [16]  Effa, J. Y., Essimbi, B. Z., and Ngundam, J. M. (2009), Synchronization of improved chaotic Colpitts oscillators using nonlinear feedback control, Nonlinear Dyn., 58(1), 39-47.
  17. [17]  Kengne, J., Chedjou, J. C., Kenne, G., and Kyamakya, K. (2012), Dynamical properties and chaos synchronization of improved Colpitts oscillators, Commun Nonlinear Sci Numer Simulat, 17(7), 2914-2923.
  18. [18]  Lu, L., Li, C., Zhao, Z., Bao, B., and Xu, Q. (2015), Colpitts chaotic oscillator coupling with a generalized Memristor, Mathematical Problems in Engineering, Article ID: 249102.
  19. [19]  Stavroulakis, P. (Ed.) (2006), Chaos Applications in Telecommunications. CRC Press, Boca Raton, USA.
  20. [20]  Maas, S. A. (2003), Nonlinear Microwave and RF Circuits, Artech House, Norwood, 537-574.
  21. [21]  Li, G. H., Zhou, S. P., and Yang K. (2007), Controlling chaos in Colpitts oscillator, Chaos, Solitons and Fractals, 33, 582-587.
  22. [22]  Rebeiz, G. M. (2003), RF MEMS: Theory, Design, and Technology, Wiley & Sons, Hoboken, New Jersey, 327-358.
  23. [23]  Mora, G. A. R. (2000), Active capacitor multiplier in Miller-compensated circuits, IEEE Trans. Solid State Circuits, 35(1), 26-32.
  24. [24]  Clayton, G. and Winder, S. (2003), Operational Amplifiers, Newnes, Oxford, Burlington, 180-183.
  25. [25]  Sengupta, S. and Barnett, K. (2012), Capacitance multiplier circuit, European Patent EP2263313B1.
  26. [26]  Dec, A. and Suyama, K. (1998),Micromachined electro-mechanically tunable capacitors and their applications to RF ICs, IEEE Trans. Microwave Theory Tech., 46, 2587-2596.
  27. [27]  Brank, J., Yao, J., Eberly, M., Malczewski, A., Varian, K., and Goldsmith, C. (2001), Raytheon (MEMtronics) RF MEMS-Based Tunable Filters, 276-284, 2001. Available:
  28. [28]  STMicroelectronics RF Tunable Capacitors,
  29. [29]  Younis, M. I. (2011), MEMS Linear and Nonlinear Statics and Dynamics, Springer, New York, 57-96.
  30. [30]  Zhang, Y. and Zhao, Y. (2006), Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading, Sensors and Actuators A, 127(2), 366-380.
  31. [31]  Török, J. S. (2000), Analytical Mechanics with an Introduction to Dynamical Systems, Wiley-Interscience, New York, chapter 6.
  32. [32]  Hilborn, R. C. (2000), Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, 2nd edition, Oxford University Press, New York, chapter 4.
  33. [33]  Lakshmanan, M. and Rajsekar, S. (2003), Nonlinear Dynamics (Integrability, Chaos and Patterns), Springer (India), New Delhi, 31-74.
  34. [34]  Parker, T. S. and Chua, L. O. (1989), Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York, 31-56.