Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain


Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email:

Variation of Response Amplitude in Parametrically Driven Single Duffing Oscillator and Unidirectionally Coupled Duffing Oscillators

Journal of Applied Nonlinear Dynamics 6(1) (2017) 121--129 | DOI:10.5890/JAND.2017.03.009

S. Rajamani; S. Rajasekar

School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India

Download Full Text PDF



We present our investigation on the effect of parametric force on the response amplitude in the single Duffing oscillator and unidirectionally coupled n Duffing oscillators. In the single oscillator parametric perturbation is of the form f xsinωt. Parametric perturbation induced oscillatory motion is found for values of f above a critical value. In the oscillatory motion the dominant frequency is found to be ω/2. A(ω/2), the amplitude of oscillation at the frequency ω/2, is found to vary linearly with ω. We consider unidirectionally coupled n oscillators with first oscillator alone driven by a parametric force and the other oscillators are nonlinearly or linearly coupled but one-way only. Depending upon the values of the coupling strength δ the oscillators, after first several oscillators, exhibit damped or undamped signal propagation. In the nonlinearly coupled oscillators the dominant frequency of oscillation is ω/2. In the linearly coupled system the frequency ω/2 is absent. The oscillators other than the first oscillator exhibiting oscillatory motions have frequencies ω or 2ω or both depending upon the values of the coupling strength.


S. Rajamani expresses her gratitude to University Grants Commission (U.G.C.), Government of India for financial support in the form of U.G.C. meritorious fellowship.


  1. [1]  Jordan, D.W. and Smith, P. (2007), Nonlinear Ordinary Differential Equations, Oxford University Press: Oxford.
  2. [2]  Rajasekar, S. and Sanjuan, M.A.F. (2016), Nonlinear Resonances, Springer: Heidelberg.
  3. [3]  Landau, L.D. and Lifshitz, E.M. (1960), Mechanics, Pergamon: London.
  4. [4]  Fossen, T.I. and Nijmeijer, H. (2012), Parametric Resonance in Dynamical Systems, Springer: Berlin.
  5. [5]  Berthet, R., Petrosyan, A., and Roman, B. (2002), An analog experiment of the parametric instability, Am. J. Phys. 70, 744-749.
  6. [6]  Rowland, D.R. (2004), Parametric resonance and nonlinear string vibrations, Am. J. Phys., 72, 758-766.
  7. [7]  Butikov, E.I. (2004), Parametric excitation of a linear oscillator, Eur. J. Phys., 25, 535-554.
  8. [8]  Batista,A.A. and Moreira, R.S.N. (2011), Signal-to-noise ratio in parametrically driven oscillators, Phys. Rev. E, 84, 061121-8.
  9. [9]  Nayfeh, A.H. and Asfar, K.R. (1988), Non-stationary parametric oscillations, J. Sound Vib., 124, 529-537.
  10. [10]  Curzon, F.L., Loke, A.L.H., Lefrancois,M.E., and Novik, K.E. (1995), Parametric instability of a pendulum, Am. J. Phys., 63, 132-136.
  11. [11]  Porter, J., Tinao, I., Laveron-Simavilla, A, and Rodriguez, J. (2013), Onset patterns in a simple model of localized parametric forcing, Phys. Rev. E, 88, 042913-16.
  12. [12]  Zounes, R.S. and Rand, R.H. (1998), Transition curves for the quasi-periodic Mathieu equation, SIAM J. Appl. Math., 58, 1094-1115.
  13. [13]  Rand, R., Guennoun, K., and Belhaq, M. (2003), 2:2:1 resonance in the quasiperiodic Mathieu equation, Nonlinear Dyn., 31, 367-374.
  14. [14]  Requa, M.V. and Turner, K.I. (2007), Precise frequency estimation in a microelectromechanical parametric resonator, Appl. Phys. Lett., 90, 173508.
  15. [15]  Baskaran, R. and Turner, K.I. (2003), Mechanical domain coupled mode parametric resonance and amplification in a torsional mode micro electro mechanical oscillator, J. Micromech. Microeng., 13, 701-707.
  16. [16]  Gudkov, V., Shimizu, H.M., and Greene, G.L. (2011), Parametric resonance enhancement in neutron interferometry and application for the search for non-Newtonian gravity, Phys. Rev. C, 83, 025501-10.
  17. [17]  Cairncross, W. and Pelster, A. (2014), Parametric resonance in Bose-Einstein condensates with periodic modulation of attractive interaction, Eur. Phys. J. D, 68, 106-112.
  18. [18]  Wustmann, W. and Shumeiko, V. (2013), Parametric resonance in tunable superconducting cavities, Phys. Rev. B, 87, 184501-23.
  19. [19]  D’Ambroise, J., Malomed, B.A., and Kevrekidis, P.G. (2014), Quasi-energies, parametric resonances and stability limits in ac-driven PT-symmetric systems, Chaos, 24, 023136-10.
  20. [20]  Clerc, M.G., Falcon, C., Fernandez-Oto, C., and Tirapegui, E. (2012), Effective-parametric resonance in a non-oscillating system, Europhys. Lett., 98, 30006.
  21. [21]  Rajasekar, S. and Lakshmanan, M. (1994), Bifurcation, chaos and suppression of chaos in FitzHugh-Nagumo nerve conduction model equation, J. Theor. Biol., 166, 275-288.
  22. [22]  Jeyakumari, S., Chinnathambi, V., Rajasekar, S., and Sanjuan, M.A.F. (2011), Vibrational resonance in an asymmetric Duffing oscillator, Int. J. Bifurcation Chaos, 21, 275-286.
  23. [23]  Rajasekar, S. (1993), Controlling of chaos by weak periodic perturbations in Duffing-van der Pol oscillator, Pramana J. Phys., 41, 295-309.
  24. [24]  Rajasekar, S., Used, J., Wagemakers, A., and Sanjuan, M.A.F. (2012), Vibrational resonance in biological nonlinear maps, Commun. Nonlinear Sci. Numer. Simul., 17, 3435-3445.