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1 Section Heading1

Please note that the first line of text that follows a heading is not indented, whereas the first lines of2

all subsequent paragraphs are.3

Use the standard equation environment to typeset your equations, e.g.4

ẍ+δ ẋ−αx+βx3 = Q0 cosΩt (1)

where ẋ= dx/dt is velocity. Q0 and Ω are excitation amplitude and frequency, respectively. δ is damping5

coefficient. α and β are linear and nonlinear stiffness coefficients of the Duffing oscillator.6

however, for multiline equations we recommend to use the eqnarray environmenta.7

a×b = c

~a ·~b =~c (2)

Theorem 1. theorem8

Proposition 2. theorem9

†Corresponding author.
Email address: email@xx.com
a In physics texts please activate the class option vecphys to depict your vectors in boldface-italic type - as is customary
for a wide range of physical subjects.
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Fig. 1 The analytical prediction of periodic solutions based on two harmonic terms (HB3): (a) constant term
a0; (b)-(d) harmonic amplitudes Ak(k = 1,2,3); and (e)-(f) harmonic phases ϕk (k = 1,2) for right potential well.
(δ = 0.5,α =−10.0,β = 10.0,Q0 = 10.0).

Lemma 3. theorem10

Corollary 4. theorem11

Conjecture 5. theorem12

In mechanical engineering, in 1918, Duffing [1] presented the hardening spring model to describe the13

vibration of electro-magnetized vibrating beam. Since then, the Duffing oscillator has been extensively14

used to describe nonlinear structural vibrations in structural dynamics. In 1964, Hayashi [2] discussed15

the approximate periodic solutions and the corresponding stability by the averaging method and har-16

monic balance method. In 1973, Nayfeh [3] used the perturbation method to approximate periodic17

motion of the Duffing oscillators (also see, Nayfeh and Mook [4]). In 1979, Holmes [5] showed the18

strange attractors of chaotic motions in nonlinear oscillators via the Duffing oscillator with a twin-well19

potential. In 1980, Ueda [6] used numerical simulations to show chaotic motion via period-doubling of20

periodic motions of Duffing oscillators. In 1997, Luo and Han [7] analytically presented the stability21

and bifurcation conditions of periodic motions of the Duffing oscillator. The constant term of the22

analytical solution for the steady-state motion of the Duffing oscillator was not considered. In 1996,23

Luo and Han [8] presented an improved solution of the Duffing oscillator with a twin-well potential.24

For analytical prediction of chaos, in 1999, Luo and Han [9] investigated chaotic motions in nonlinear25

rod through the Duffing oscillator. For the periodically forced Duffing oscillator with damping, the26

analytical prediction of periodic solutions is still very difficult. In this paper, the analytical solutions27

of periodic motions will be investigated and the analytical route of periodic motions to chaos will be28

of great interest.29

To look for approximate analytical solution of nonlinear oscillator, such an issue started from La-30

grange [10] to investigate the three-body problem as a perturbation of the two-body problem by the31

method of averaging. In the end of the 19th century, Poincare [11] further developed the perturba-32

tion theory to investigate the motions of celestial bodies. In 1920, van der Pol [12] used the method33

of averaging to determine the periodic solutions of oscillation systems in circuits. Until 1928, the34

asymptotic validity of the method of averaging was not proved. In 1928, Fatou [13] gave the proof35

of the asymptotic validity through the solution existence theorems of differential equations. In 1935,36

Krylov, Bogoliubov and Mitropolsky [14] further developed the method of averaging, and the detailed37

presentation was given. In 1964, Hayashi [2] presented the perturbation methods including averaging38

method and principle of harmonic balance. In 1969, Barkham and Soudack [15] extended the Krylov-39

Bogoliubov method for the approximate solutions of nonlinear autonomous second order differential40
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equations (also see, Barkham and Soudack [16]). In 1987, a generalized harmonic balance approach41

was used by Garcia-Margallo and Bejarano [17] to determine approximate solutions of nonlinear oscil-42

lations with strong nonlinearity. In the same year, Rand and Armbruster [18] used the perturbation43

method and bifurcation theory to determine the stability of periodic solutions. In 1989, Yuste and44

Bejarano [19] used the elliptic functions rather than trigonometric functions to improve the Krylov-45

Bogoliubov method. In 1990, Coppola and Rand [20] used the averaging method with elliptic functions46

to determine approximation of limit cycle. In 1997, Luo and Han [7] analytically studied the stability47

and bifurcations of periodic solutions of Duffing oscillators through the first order harmonic balance48

method, and provided the analytical conditions for the Hopf and saddle-node bifurcations. To obtain49

accurate results of periodic solutions in nonlinear vibration, many harmonic terms are included in the50

harmonic balance method. In 2008, Peng et al [21] presented the approximate period-1 solution for the51

Duffing oscillator by the HB3 method compared with the fourth-order Runge-Kutta method. In 2011,52

Luo and Huang [22] further discussed a generalized harmonic balance method to obtain the analytical53

solution of period-1 motion. Luo and Huang [23] also presented a generalized harmonic balance method54

to determine period-m solutions in nonlinear oscillators.55

In this paper, the generalized harmonic balance method will be used to investigate analytical pe-56

riodic motions in the periodically forced Duffing oscillator with a twin-well potential. The bifurcation57

tree from period-1 motions to chaos will be presented with varying parameters. The corresponding58

unstable periodic motions in the Duffing oscillator will be presented for a better understanding of non-59

linear dynamics in such a Duffing oscillator. Numerical illustrations of stable and unstable periodic60

motions will be carried out.61

2 Section Heading62

From Eq.(1), the standard form is63

ẍ+ f (x, ẋ, t) = 0 (3)

2.1 Subsection Heading64

The Fourier series expression of any periodic motion in nonlinear systems needs infinite terms to65

give the exact solution of such a periodic motion. In practice, it is impossible to do so. Thus, the66

truncated Fourier series solutions will be used to give an approximate solution that can be close to67

the exact solution. From such approximate, analytical solutions, the equilibrium solution of coefficient68

dynamical system for the Fourier series of the periodic motion can be obtained from Eq.(3) using69

Newton-Raphson method, and the stability and bifurcation analysis of the such equilibrium points can70

be completed through the eigenvalue analysis. The system parameters are71

δ = 0.5,α =−10.0,β = 10,Q0 = 10.0 (4)

The backbone curves of harmonic amplitude varying with excitation frequency Ω are illustrated. The72

harmonic amplitude and phase are defined by73

Ak/m ≡

√

b2

k/m
+ c2

k/m
,ϕkm = arctan

ck/m

bk/m

(5)

and the corresponding solution in Eq.(43) is74

x∗(t) = a
(m)
0

+
N

∑
k=1

Ak/m cos

(

k

m
Ωt −ϕk/m

)

. (6)
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Table 1 Input data for numerical simulations of periodic motions (δ = 0.5,α =−10.0,β = 10.0,Q0 = 10.0).

Ω
Initial conditions (t = 0.0)

Stability Period-m
x0 ẋ0

Fig.10(a) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(b) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(c) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(d) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(e) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(f) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig. 2 A parameter map from the analytical prediction of periodic solutions based on three harmonic terms
(HB3): (a) Global view and (b) zoomed view. (δ = 0.5,α =−10.0,β = 10,Q0 = 10.0).

In Luo and Han [8], one term harmonic term was considered for period-1 motions for the large75

and small orbit. In this paper, many harmonic terms will be considered to achieve a more accurate76

prediction of the periodic motions. For period-1 motion, the first three harmonic terms of the Fourier77

series expansion (HB3) will be used to obtain the approximate periodic solutions. The constant term78

a
(1)
0

≡ a0 and the first three harmonic amplitudes Ak and phases ϕk(k = 1,2,3) versus excitation frequency79

are plotted in Fig.1(a)-(g), respectively. A parameter map is presented in Fig.2.80

The initial conditions for stable period-1 motion (Ω = 2.75), unstable period-1 motion and stable81

period-2 motion (Ω = 2.753), unstable period-1 motion, unstable period-2 motion and stable period-482

motion (Ω = 2.7537) are listed in Table 1.83

3 Conclusions84

In this paper, analytical routines of period-1 motions to chaos in the Duffing oscillator with a twin-85

potential well were discussed comprehensively through the generalized harmonic balance method. The86

analytical solutions of period-m motions were developed by the Fourier series and the corresponding87

Hopf bifurcations of periodic motions cause new periodic motions with period-doubling. Three ana-88

lytical routes of asymmetric period-1 motions to chaos were developed. The approximate, analytical89

periodic solutions were verified via numerical simulations, and the analytical, unstable periodic mo-90

tions were given as well. With exact unstable periodic motion, the numerical simulations should stay91
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with the analytical solution if without any computational errors. The analytical routes with unstable92

periodic motions can lead us to find unstable chaos.93
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