Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Computational Complex Dynamcs of the Discrete Lorenz System

Journal of Applied Nonlinear Dynamics 8(3) (2019) 345--366 | DOI:10.5890/JAND.2019.09.002

Sk. Sarif Hassan

Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India

Download Full Text PDF

 

Abstract

The dynamics of the classical Lorenz system is well studied in 1963 by E. N. Lorenz. Later on, there have been an extensive studies on the classical Lorenz system with the complex variables and the discrete time Lorenz system with real variables. To the best of knowledge of the author, so far there is no study on discrete time Lorenz system in complex variables. In this article, an attempt has been made to observe and understand the discrete dynamics of the Lorenz system with complex variables. This study compares the discrete dynamics of the Lorenz system with complex variables to that of the classical Lorenz system involving real and complex variables.

Acknowledgments

The author thanks to Snighdha Das of IIT Kharagpur for long hours fruitful discussions and suggestions. The author also grateful to his parent institution Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur for providing necessary environment in making the work completed.

References

  1. [1]  Lorenz, E. (1989), Computational chaos a prelude to computational instability, Physica D, 35, 299-317.
  2. [2]  Lorenz, E., Sprott, J.C., and Thiod, W. (1963), Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, 20, 130-141.
  3. [3]  Stewart, I. (2000), The Lorenz attractor exists, Nature, 406, 948-949.
  4. [4]  Li, C.B., Sprott, J.C., and Thiod, W. (2015), Linearization of the Lorenz system, Physics Letters A, 379, 888-893.
  5. [5]  Chen, G. and Dong, X. (1998), From chaos to order: Methodologies, Perspectives and applications; World Scientific.
  6. [6]  Rossler, O.E. (1976), An equation for continuous chaos, Physics Letters A, 57, 397-398.
  7. [7]  Sprott, J.C. (1994), Some simple chaotic flows, Phys. Rev. E, 50, R647-R650.
  8. [8]  Chen, G. and Ueta, T. (1999), Yet another chaotic attractor, Int. J. Bifurcation and Chaos, 9, 1465-1466.
  9. [9]  Lu, J. and Chen, G. (2002), A new chaotic attractor coined, Int. J. Bifurcation and Chaos, 12(3), 659-661.
  10. [10]  Lu, J., Chen, G., and Zhang, S. (2002), Dynamical analysis of a new chaotic attractor, Int. J. Bifurcation and Chaos, 12(5), 1001-1015.
  11. [11]  Lu, J., Chen, G., and Cheng, D. (2004), A new chaotic system and beyond: The generalized Lorenz-like system, Int. J. Bifurcation and Chaos, 14(5), 1507-1537.
  12. [12]  Sprott, J.C. (2000), A new class of chaotic circuit, Physics Letters A, 266, 19-23.
  13. [13]  Sprott, J.C. (2000), Simple chaotic systems and circuits, Am. J. Physics, 68, 758-763.
  14. [14]  Smale, S. (2000) Mathematical problems for the next century, Mathematics: Frontiers and Perspectives, 271, 294.
  15. [15]  Song, W.Q. and Liang, J.R. (2013), Difference equation of Lorenz system, International Journal of Pure and Applied Mathematics, 83(1), 101-110.
  16. [16]  Moghtadaei, M. and Hashemi Golpayegani, M.R. (2011), Complex dynamic behaviors of the complex Lorenz system, Scientia Iranica.
  17. [17]  Mahmoud, G.M., Aly, S.A., and AL-Kashif, M.A. (2008), Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system, Nonlinear Dynamics, 51(1-2), 171-181.
  18. [18]  Jones, C.A., Weiss, N.O., and Cattaneo, F. (1985), Nonlinear dynamos: a complex generalization of the Lorenz equations, Physica D, 14(2), 161-176.
  19. [19]  Aly, S., Al-Qahtani, A., Khenous, H.B., and Mahmoud, G.M. (2014), Impulsive Control and Synchronization of Complex Lorenz Systems, Abstract and Applied Analysis, 2014, Article ID 932327.
  20. [20]  Mahmoud, G.M. and Bountis, T. (2004), The dynamics of systems of complex nonlinear oscillators: a review, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14(11), pp. 3821-3846.
  21. [21]  Mahmoud, G.M. (1998), Approximate solutions of a class of complex nonlinear dynamical systems, Physica A: Statistical Mechanics and its Applications, 253(1-4), 211-222.
  22. [22]  Flessas, G.P. (1989), New exact solutions of the complex Lorenz equations, Journal of Physics A: Mathematical and General, 22(5), L137-L141.
  23. [23]  Sprott, J.C. and Linz, S.J. (2000), Algebraically simple chaotic flows, Int. J. Chaos Th. Appl., 5, 3-22.
  24. [24]  Wang, X. andWang, M.A, (2008), Hyperchaos generated from Lorenz system, Physica A, 387(14), 3751-3758.
  25. [25]  Al-Roumy, A.M. (2011), The study of a new Lorenz-like model, Journal of Basrah Researches (Sciences), 37(3A).
  26. [26]  Alsafasfeh, Q.H. and Al-Arni, M.S. (2011), New chaotic behavior from Lorenz and Rossler systems and its electronic circuit implementation, Circuits and Systems, 2, 101-105.
  27. [27]  Yorke, J.A. and Yorke, E.D. (1979), Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model, Journal of Statistical Physics, 21(3), 263-277.
  28. [28]  Shimizu, T. and Morioka, N. (1978), Transient behavior in periodic regions of the Lorenz model, Physics Letters A, 69(3), 148-150.
  29. [29]  Liao, T.L. (1998), Adaptive synchronization of two Lorenz systems, Chaos, Solitons and Fractals, 9(9), 1555-1561.
  30. [30]  Richter, H. (2001) Controlling the Lorenz system: combining global and local schemes, Chaos, Solitons and Fractals, 12(13), 2375-2380.
  31. [31]  Oded Galor, (2007) Discrete Dynamical Systems, ISBN-13 978-3-540-36775-8, Springer.
  32. [32]  Sprott, J.C., Wang, X., and Chen, G.R. (2013), Coexistence Of Point, Periodic and Strange Attractors, Int. J. Bifurcation and Chaos, 23(5), 1350093(1-5).